1、對於半正定矩陣來說,相應的條件應改為所有的主子式非負。順序主子式非負並不能推出矩陣是半正定的。
2、半正定矩陣定義:設A是實對稱矩陣。如果對任意的實非零列矩陣X有XT*A*X≥0,就稱A為半正定矩陣。
3、A∈Mn(K)是半正定矩陣的充要條件是:A的所有主子式大於或等於零。拓展資料:在數學中,矩陣是一個按照長方陣列排列的複數或實數集合,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。 矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;計算機科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。 數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個幾個世紀以來的課題,是一個不斷擴大的研究領域。矩陣分解方法簡化了理論和實際的計算。針對特定矩陣結構定製的演算法在有限元方法和其他計算中加快了計算。無限矩陣發生在行星理論和原子理論中。 無限矩陣的一個簡單例子是代表一個函式的泰勒級數的導數運算元的矩陣。
1、對於半正定矩陣來說,相應的條件應改為所有的主子式非負。順序主子式非負並不能推出矩陣是半正定的。
2、半正定矩陣定義:設A是實對稱矩陣。如果對任意的實非零列矩陣X有XT*A*X≥0,就稱A為半正定矩陣。
3、A∈Mn(K)是半正定矩陣的充要條件是:A的所有主子式大於或等於零。拓展資料:在數學中,矩陣是一個按照長方陣列排列的複數或實數集合,最早來自於方程組的係數及常數所構成的方陣。這一概念由19世紀英國數學家凱利首先提出。 矩陣是高等代數學中的常見工具,也常見於統計分析等應用數學學科中。在物理學中,矩陣於電路學、力學、光學和量子物理中都有應用;計算機科學中,三維動畫製作也需要用到矩陣。 矩陣的運算是數值分析領域的重要問題。將矩陣分解為簡單矩陣的組合可以在理論和實際應用上簡化矩陣的運算。對一些應用廣泛而形式特殊的矩陣,例如稀疏矩陣和準對角矩陣,有特定的快速運算演算法。 數值分析的主要分支致力於開發矩陣計算的有效演算法,這是一個幾個世紀以來的課題,是一個不斷擴大的研究領域。矩陣分解方法簡化了理論和實際的計算。針對特定矩陣結構定製的演算法在有限元方法和其他計算中加快了計算。無限矩陣發生在行星理論和原子理論中。 無限矩陣的一個簡單例子是代表一個函式的泰勒級數的導數運算元的矩陣。