二進位制的原理如下:
一、加法法則: 0+0=0,0+1=1,1+0=1,1+1=0
二、減法,當需要向上一位借數時,必須把上一位的1看成下一位的(2)10。減法法則: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1當(10) 看成 2 則 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
三、乘法法則: 0×0=0,0×1=0,1×0=0,1×1=1
四、除法應注意: 0÷0 =0(無意義),0÷1 =0,1÷0 =0(無意義)
除法法則: 0÷1=0,1÷1=1
擴充套件資料
二進位制就是一直迴圈,直到達到精度限制才停止(所以,計算機儲存的小數一般會有誤差,所以在程式設計中,要想比較兩個小數是否相等,只能比較某個精度範圍內是否相等。)。這時,十進位制的0.65,用二進位制就可以表示為:0.1010011。
在現實生活和記數器中,如果表示數的“器件”只有兩種狀態,如電燈的“亮”與“滅”,開關的“開”與“關”。一種狀態表示數碼0,另一種狀態表示數碼1,1加1應該等於2,因為沒有數碼2,只能向上一個數位進一,就是採用“滿二進一”的原則,這和十進位制是採用“滿十進一”原則完全相同。
二進位制的原理如下:
一、加法法則: 0+0=0,0+1=1,1+0=1,1+1=0
二、減法,當需要向上一位借數時,必須把上一位的1看成下一位的(2)10。減法法則: 0-0 =0,1-0=1,1-1=0,0-1=1 有借位,借1當(10) 看成 2 則 0 - 1 - 1 = 0 有借位 1 - 1 - 1 = 1 有借位。
三、乘法法則: 0×0=0,0×1=0,1×0=0,1×1=1
四、除法應注意: 0÷0 =0(無意義),0÷1 =0,1÷0 =0(無意義)
除法法則: 0÷1=0,1÷1=1
擴充套件資料
二進位制就是一直迴圈,直到達到精度限制才停止(所以,計算機儲存的小數一般會有誤差,所以在程式設計中,要想比較兩個小數是否相等,只能比較某個精度範圍內是否相等。)。這時,十進位制的0.65,用二進位制就可以表示為:0.1010011。
在現實生活和記數器中,如果表示數的“器件”只有兩種狀態,如電燈的“亮”與“滅”,開關的“開”與“關”。一種狀態表示數碼0,另一種狀態表示數碼1,1加1應該等於2,因為沒有數碼2,只能向上一個數位進一,就是採用“滿二進一”的原則,這和十進位制是採用“滿十進一”原則完全相同。