數學是研究現實世界空間形式和數量關係的一門科學。它包括算術、代數、幾何、三角、解析幾何、微積分等等。小學數學是指算術和簡易代數及幾何初步知識。數學科學伴隨著人類社會的發展,也有它自身發展的歷程。前蘇聯科學院院士A·H·柯爾莫戈洛夫曾把數學發展史劃分為四個階段:第一個階段的前期產生自然數概念、計算方法和簡單的幾何圖形,後期出現數的寫法、數的算術運算、某些幾何圖形的運用,解答簡單的代數題目;第二個階段逐漸形成了初等數學的分支,即算術、代數、幾何、三角;第三個階段建立了解析幾何、微積分、機率論等學科;第四個階段出現計算機學科,以及應用數學的眾多分支、純數學的若干問題的重大突破等。中國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、×、+等,很可能是中國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進位制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書·律曆志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為“九九”歌,已經成為很普通的知識。春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進位制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有“合分”、“少廣”等數學思想
數學是研究現實世界空間形式和數量關係的一門科學。它包括算術、代數、幾何、三角、解析幾何、微積分等等。小學數學是指算術和簡易代數及幾何初步知識。數學科學伴隨著人類社會的發展,也有它自身發展的歷程。前蘇聯科學院院士A·H·柯爾莫戈洛夫曾把數學發展史劃分為四個階段:第一個階段的前期產生自然數概念、計算方法和簡單的幾何圖形,後期出現數的寫法、數的算術運算、某些幾何圖形的運用,解答簡單的代數題目;第二個階段逐漸形成了初等數學的分支,即算術、代數、幾何、三角;第三個階段建立了解析幾何、微積分、機率論等學科;第四個階段出現計算機學科,以及應用數學的眾多分支、純數學的若干問題的重大突破等。中國數學在世界數學發展史上,有它卓越的貢獻。早在遠古時代,人們就用繩結表示事物的多少,在彩陶中繪有大量的直線、三角、圓、方、菱形、五邊形、六邊形等對稱圖案,在房屋遺址的基地上,亦發現幾何圖形,表明遠古的人們在一定程度上已經具有數和形的概念。在新石器時期的彩陶缽上,有多種刻畫符號,其中丨、、、×、+等,很可能是中國最早的記數符號。產生文字之後,在殷商的甲骨文中出現了記數的專用文字和十進位制記數法,並且運用規和矩作為簡單的繪圖和測量工具。《前漢書·律曆志》記載了用竹棍表示數和計算的方法,稱為算籌和籌算。在春秋早期乘法口訣被稱為“九九”歌,已經成為很普通的知識。春秋戰國時期,學術繁榮,產生了相當精彩和可貴的數學思想;公元前6世紀,已經有了關於簡單體積和比例分配問題的演算法,在《考工記》中記載了分數和角度的資料;到秦始皇時,統一了度量衡,並且基本上採用了十進位制的度量單位,在《墨經》中提出了幾何名詞的定義和幾何命題等。《杜忠算術》和《許商算術》是最早的數學專著,但這兩部書都失傳了。至今仍保留的古代數學專著是《算數書》,全書共有60多個小標題、90多個題目,書中內容涉及了整數和分數的四則運算、比例問題、面積和體積問題等、並且含有“合分”、“少廣”等數學思想