sin(-α)= -sinα;
cos(-α) = cosα;
sin(π/2-α)= cosα;
cos(π/2-α) =sinα;
sin(π/2+α) = cosα;
cos(π/2+α)= -sinα;
sin(π-α) =sinα;
cos(π-α) = -cosα;
sin(π+α)= -sinα;
cos(π+α) =-cosα;
tanA= sinA/cosA;
tan(π/2+α)=-cotα;
tan(π/2-α)=cotα;
tan(π-α)=-tanα;tan(π+α)=tanα
擴充套件資料
三角函式化簡與求值時需要的知識儲備:
①熟記特殊角的三角函式值;
②注意誘導公式的靈活運用
誘導公式口訣“奇變偶不變,符號看象限”
意義:k×π/2±a(k∈z)的三角函式值.
(1)當k為偶數時,等於α的同名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號;
(2)當k為奇數時,等於α的異名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號。
sin(-α)= -sinα;
cos(-α) = cosα;
sin(π/2-α)= cosα;
cos(π/2-α) =sinα;
sin(π/2+α) = cosα;
cos(π/2+α)= -sinα;
sin(π-α) =sinα;
cos(π-α) = -cosα;
sin(π+α)= -sinα;
cos(π+α) =-cosα;
tanA= sinA/cosA;
tan(π/2+α)=-cotα;
tan(π/2-α)=cotα;
tan(π-α)=-tanα;tan(π+α)=tanα
擴充套件資料
三角函式化簡與求值時需要的知識儲備:
①熟記特殊角的三角函式值;
②注意誘導公式的靈活運用
誘導公式口訣“奇變偶不變,符號看象限”
意義:k×π/2±a(k∈z)的三角函式值.
(1)當k為偶數時,等於α的同名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號;
(2)當k為奇數時,等於α的異名三角函式值,前面加上一個把α看作銳角時原三角函式值的符號。