正多邊形內角計算公式與半徑無關
要已知正多邊形邊數為N 內角和=180(N-2)
半徑為R
圓的內接三角形面積公式:(3倍根號3)除以4再乘以R方
外切三角形面積公式:3倍根號3 R方
外切正方形:4R方
內接正方形:2R方
五邊形以上的就分割成等邊三角形再算
內角和公式——(n-2)*180`
我們都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三點的面積公式為
|x1 x2 x3|
S(A,B,C) = |y1 y2 y3| * 0.5 = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]*0.5
|1 1 1 |
(當三點為逆時針時為正,順時針則為負的)
對多邊形A1A2A3、、、An(順或逆時針都可以),設平面上有任意的一點P,則有:
S(A1,A2,A3,、、、,An)
= abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1))
P是可以取任意的一點,用(0,0)時就是下面的了:
設點順序 (x1 y1) (x2 y2) ... (xn yn)
則面積等於
|x1 y1| |x2 y2| |xn yn|
0.5 * abs( | | + | | + ...... + | | )
|x2 y2| |x3 y3| |x1 y1|
其中
|x1 y1|
| |=x1*y2-y1*x2
|x2 y2|
因此面積公式展開為:
0.5 * abs( | | + | | + ...... + | | )=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1)
正多邊形內角計算公式與半徑無關
要已知正多邊形邊數為N 內角和=180(N-2)
半徑為R
圓的內接三角形面積公式:(3倍根號3)除以4再乘以R方
外切三角形面積公式:3倍根號3 R方
外切正方形:4R方
內接正方形:2R方
五邊形以上的就分割成等邊三角形再算
內角和公式——(n-2)*180`
我們都知道已知A(x1,y1)、B(x2,y2)、C(x3,y3)三點的面積公式為
|x1 x2 x3|
S(A,B,C) = |y1 y2 y3| * 0.5 = [(x1-x3)*(y2-y3) - (x2-x3)*(y1-y3)]*0.5
|1 1 1 |
(當三點為逆時針時為正,順時針則為負的)
對多邊形A1A2A3、、、An(順或逆時針都可以),設平面上有任意的一點P,則有:
S(A1,A2,A3,、、、,An)
= abs(S(P,A1,A2) + S(P,A2,A3)+、、、+S(P,An,A1))
P是可以取任意的一點,用(0,0)時就是下面的了:
設點順序 (x1 y1) (x2 y2) ... (xn yn)
則面積等於
|x1 y1| |x2 y2| |xn yn|
0.5 * abs( | | + | | + ...... + | | )
|x2 y2| |x3 y3| |x1 y1|
其中
|x1 y1|
| |=x1*y2-y1*x2
|x2 y2|
因此面積公式展開為:
|x1 y1| |x2 y2| |xn yn|
0.5 * abs( | | + | | + ...... + | | )=0.5*abs(x1*y2-y1*x2+x2*y3-y2*x3+...+xn*y1-yn*x1)
|x2 y2| |x3 y3| |x1 y1|