二分法在很多地方應該都會見到,這裡是透過二分法迭代逼近的方法求出一個方程的根。
function xc = bisection(f,a,b,tol)
% use the bisection method to find the root of the function
% Page 30,computer problem 7(Bisection method)
% input:
% f:the function that transform from the equation
% a,b:the left and right value of the interval which the root is in% tol:the accuracy
% output:
% xc:the solution of the equationif sign(f(a)) * sign(f(b)) >=0
error("f(a)f(b)
disp("The function should at least include 3 parameters");endif nargin == 3
tol = 10^-6;endwhile (b-a)/2 > tol
c = (a + b)/2;
if f(c) == 0 % when f(c) == 0,c is a root of the function
break
end
if f(a) * f(c)
% a and c form a new interval
b = c; else % c and b form a new interval
a = c; endendxc = (a+b)/2; % the mid_rang is the root that we find
二分法在很多地方應該都會見到,這裡是透過二分法迭代逼近的方法求出一個方程的根。
function xc = bisection(f,a,b,tol)
% use the bisection method to find the root of the function
% Page 30,computer problem 7(Bisection method)
% input:
% f:the function that transform from the equation
% a,b:the left and right value of the interval which the root is in% tol:the accuracy
% output:
% xc:the solution of the equationif sign(f(a)) * sign(f(b)) >=0
error("f(a)f(b)
disp("The function should at least include 3 parameters");endif nargin == 3
tol = 10^-6;endwhile (b-a)/2 > tol
c = (a + b)/2;
if f(c) == 0 % when f(c) == 0,c is a root of the function
break
end
if f(a) * f(c)
% a and c form a new interval
b = c; else % c and b form a new interval
a = c; endendxc = (a+b)/2; % the mid_rang is the root that we find