回覆列表
  • 1 # 影片好笑

      複數z=a+bi(a、b∈R)與有序實數對(a,b)是一一對應關係 這是因為對於任何一個複數z=a+bi(a、b∈R),由複數相等的定義可知,可以由一個有序實數對(a,b)惟一確定,如z=3+2i可以由有序實數對(3,2)確定,又如z=-2+i可以由有序實數對(-2,1)來確定;又因為有序實數對(a,b)與平面直角座標系中的點是一一對應的,如有序實數對(3,2)它與平面直角座標系中的點A,橫座標為3,縱座標為2,建立了一一對應的關係。由此可知,複數集與平面直角座標系中的點集之間可以建立一一對應的關係。  點Z的橫座標是a,縱座標是b,複數z=a+bi(a、b∈R)可用點Z(a,b)表示,這個建立了直角座標系來表示複數的平面叫做複平面,也叫高斯平面,x軸叫做實軸,y軸叫做虛軸。  實軸上的點都表示實數。  對於虛軸上的點要除原點外,因為原點對應的有序實數對為(0,0), 它所確定的複數是z=0+0i=0表示是實數.故除了原點外,虛軸上的點都表示純虛數。  在複平面內的原點(0,0)表示實數0,實軸上的點(2,0)表示實數2,虛軸上的點(0,-1)表示純虛數-i,虛軸上的點(0,5)表示純虛數5i。  非純虛數對應的點在四個象限,例如點(-2,3)表示的複數是-2+3i,z=-5-3i對應的點(-5,-3)在第三象限等等。  複數集C和複平面內所有的點所成的集合是一一對應關係,即: 複數複平面內的點。  這是因為,每一個複數有複平面內惟一的一個點和它對應;反過來,複平面內的每一個點,有惟一的一個複數和它對應。  這就是複數的一種幾何意義.也就是複數的另一種表示方法,即幾何表示方法。

  • 中秋節和大豐收的關聯?
  • 《海賊王》有沒有推出“頂上之戰”題材的手辦模型?哪一款值得推薦?