過最好的是記住根號2,根號3,根號5等一些數值的值
因為很多數值都可以分解成這些數的乘積形式
[解題過程]
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11"56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
徒手開n次方根的方法:
原理:設被開方數為X,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,
則有:(10*a+b)^n-(10*a)^n
用純文字描述比較困難,下面用例項說明:
我們求 2301781.9823406 的5次方根:
第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用"表示);不足部分在兩端用0補齊;
23"01781.98234"06000"00000"00000"..........
從高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,條件:(10*a+b)^n-(10*a)^n
差c=23-b^5=22,與下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,
條件:(10*a+b)^n-(10*a)^n
b取最大值8,差c=412213,與下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一個b,
b取最大值7
說明:這裡可使用近似公式估算b的值:
當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;與下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一個b,
(1870+b)^5-1870^5
b取最大值2,差c=28335908584368;與下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一個b,
(18720+b)^5-18720^5
b取最大值4,差c=376399557145381376;與下一段合成,
c=c*10^5+下一段=37639955714538137600000
過最好的是記住根號2,根號3,根號5等一些數值的值
因為很多數值都可以分解成這些數的乘積形式
[解題過程]
述求平方根的方法,稱為筆算開平方法,用這個方法可以求出任何正數的算術平方根,它的計算步驟如下:
1.將被開方數的整數部分從個位起向左每隔兩位劃為一段,用撇號分開(豎式中的11"56),分成幾段,表示所求平方根是幾位數;
2.根據左邊第一段裡的數,求得平方根的最高位上的數(豎式中的3);
3.從第一段的數減去最高位上數的平方,在它們的差的右邊寫上第二段陣列成第一個餘數(豎式中的256);
4.把求得的最高位數乘以20去試除第一個餘數,所得的最大整數作為試商(3×20除 256,所得的最大整數是 4,即試商是4);
5.用商的最高位數的20倍加上這個試商再乘以試商.如果所得的積小於或等於餘數,試商就是平方根的第二位數;如果所得的積大於餘數,就把試商減小再試(豎式中(20×3+4)×4=256,說明試商4就是平方根的第二位數);
6.用同樣的方法,繼續求平方根的其他各位上的數.
徒手開n次方根的方法:
原理:設被開方數為X,開n次方,設前一步的根的結果為a,現在要試根的下一位,設為b,
則有:(10*a+b)^n-(10*a)^n
用純文字描述比較困難,下面用例項說明:
我們求 2301781.9823406 的5次方根:
第1步:將被開方的數以小數點為中心,向兩邊每隔n位分段(下面用"表示);不足部分在兩端用0補齊;
23"01781.98234"06000"00000"00000"..........
從高位段向低位段逐段做如下工作:
初值a=0,差c=23(最高段)
第2步:找b,條件:(10*a+b)^n-(10*a)^n
差c=23-b^5=22,與下一段合成,
c=c*10^n+下一段=22*10^5+01781=2201781
第3步:a=1(計算機語言賦值語句寫作a=10*a+b),找下一個b,
條件:(10*a+b)^n-(10*a)^n
b取最大值8,差c=412213,與下一段合成,
c=c*10^5+下一段=412213*10^5+98234=41221398234
第4步:a=18,找下一個b,
條件:(10*a+b)^n-(10*a)^n
b取最大值7
說明:這裡可使用近似公式估算b的值:
當10*a>>b時,(10*a+b)^n-(10*a)^n≈n*(10*a)^(n-1)*b,即:
b≈41221398234/n/(10*a)^(n-1)=41221398234/5/180^4≈7.85,取b=7
以下各步都更加可以使用此近似公式估算b之值
差c=1508808527;與下一段合成,
c=c*10^5+下一段=1508808527*10^5+06000=150880852706000
第5步:a=187,找下一個b,
條件:(10*a+b)^n-(10*a)^n
(1870+b)^5-1870^5
b取最大值2,差c=28335908584368;與下一段合成,
c=c*10^5+下一段=2833590858436800000
第6步:a=1872,找下一個b,
條件:(10*a+b)^n-(10*a)^n
(18720+b)^5-18720^5
b取最大值4,差c=376399557145381376;與下一段合成,
c=c*10^5+下一段=37639955714538137600000