劇多
首頁
資訊
體育
娛樂
汽車
投資
財經
軍事
科技
數碼
科學
遊戲
歷史
健康
政治
影視
旅遊
育兒
美食
時尚
房產
農業
社會
文化
教育
技術
美文
情感
故事
家居
職場
自然
闢謠
心理
攝影
漫畫
生活
其它
Club
Tips
熱門話題
搜尋
註冊
登入
首頁
>
Club
>
2021-02-11 20:14
“∞”是數學符號“無窮大”的意思,怎麼讀?
32
回覆列表
1 # 奉孝歷史
讀作:無窮、無窮大。
由來:莫比烏斯帶常被認為是無窮大符號"∞"的創意來源,因為如果某個人站在一個巨大的莫比烏斯帶的表面上沿著他能看到的"路"一直走下去,他就永遠不會停下來。但是這是一個不真實的傳聞,因為"∞"的發明比莫比烏斯帶還要早。古希臘哲學家亞里士多德(Arixtote,公元前384-322)認為,無窮大可能是存在的,因為一個有限量是無限可分的,是不能達到極點的,但是無限是世界上公認不能達到的。12世紀,印度出現了一位偉大的數學家布哈斯克拉(Bhaskara),他的概念比較接近現代理論化的概念。將8水平置放成"∞"來表示"無窮大"符號是在英華人沃利斯(John Wallis,1616-1703)的論文《算術的無窮大》(1655年出版)一書中首次提出的。在數學中,有兩個偶爾會用到的無限符號的等式,即:∞=∞+1,∞=∞×1。某一正數值表示無限大的一種公式,沒有具體數字,但是正無窮表示比任何一個數字都大的數值。 符號為+∞,同理負無窮的符號式-∞。最早關於無限的記載出現在印度的夜柔吠陀(公元前1200-900)。書中說:"如果你從無限中移走或新增一部分,剩下的還是無限。"印度耆那教的經書《Surya Prajnapti》(c. 400 BC) 把數分作三類:"可計的"、"不可計的"及"無限"。每一類再細分作三序分:可計的:小的、中的與大的。 不可計的: 接近不可計的、真正不可計的與計無可計的。 無限:接近無限、真正無限與無窮無盡。 這是在人類記載上第一次出現無限也可以分類這一個念頭。無窮大,謂一個變數在變化過程中,其絕對值永遠大於任意大的已定正數。一般用符號∞來表示。無窮或無限,數學符號為∞。來自於拉丁文的"infinitas",即"沒有邊界"的意思。它在神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。在神學方面,例如在像神學家東斯歌德(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、戴德金的無限群、羅素悖論、超實數、射影幾何、擴充套件的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。由於一個無窮集合的冪集總是具有比它本身更高的基數,所以透過構造一系列的冪集,可以證明無窮的基數的個數是無窮的。然而有趣的是,無窮基數的個數比任何基數都多,從而它是一個比任何無窮大都要大的"無窮大",它不能對應於一個基數,否則會產生康托爾悖論的一種形式。換號數學數字反應現像多餘感應驗收破譯駁運數字。
發表回復
∧
中秋節和大豐收的關聯?
∨
你覺得是荷包蛋好吃還是蒸煮蛋好吃?
熱門排行
積碳清除劑真的有用嗎?
澳門人消費攻略?
口香糖樹是什麼樹?
蘆筍種植需要哪些條件?
兒子結婚媽媽跳什麼舞合適?
逐漸清醒文案?
論文沒有三級標題怎麼處理?
庫裡小名et是什麼意思?
生化危機七血清怎麼找到?
如何使滷菜色澤紅亮?
讀作:無窮、無窮大。
由來:莫比烏斯帶常被認為是無窮大符號"∞"的創意來源,因為如果某個人站在一個巨大的莫比烏斯帶的表面上沿著他能看到的"路"一直走下去,他就永遠不會停下來。但是這是一個不真實的傳聞,因為"∞"的發明比莫比烏斯帶還要早。古希臘哲學家亞里士多德(Arixtote,公元前384-322)認為,無窮大可能是存在的,因為一個有限量是無限可分的,是不能達到極點的,但是無限是世界上公認不能達到的。12世紀,印度出現了一位偉大的數學家布哈斯克拉(Bhaskara),他的概念比較接近現代理論化的概念。將8水平置放成"∞"來表示"無窮大"符號是在英華人沃利斯(John Wallis,1616-1703)的論文《算術的無窮大》(1655年出版)一書中首次提出的。在數學中,有兩個偶爾會用到的無限符號的等式,即:∞=∞+1,∞=∞×1。某一正數值表示無限大的一種公式,沒有具體數字,但是正無窮表示比任何一個數字都大的數值。 符號為+∞,同理負無窮的符號式-∞。最早關於無限的記載出現在印度的夜柔吠陀(公元前1200-900)。書中說:"如果你從無限中移走或新增一部分,剩下的還是無限。"印度耆那教的經書《Surya Prajnapti》(c. 400 BC) 把數分作三類:"可計的"、"不可計的"及"無限"。每一類再細分作三序分:可計的:小的、中的與大的。 不可計的: 接近不可計的、真正不可計的與計無可計的。 無限:接近無限、真正無限與無窮無盡。 這是在人類記載上第一次出現無限也可以分類這一個念頭。無窮大,謂一個變數在變化過程中,其絕對值永遠大於任意大的已定正數。一般用符號∞來表示。無窮或無限,數學符號為∞。來自於拉丁文的"infinitas",即"沒有邊界"的意思。它在神學、哲學、數學和日常生活中有著不同的概念。通常使用這個詞的時候並不涉及它的更加技術層面的定義。在神學方面,例如在像神學家東斯歌德(Duns Scotus)的著作中,上帝的無限能量是運用在無約束上,而不是運用在無限量上。在哲學方面,無窮可以歸因於空間和時間。在神學和哲學兩方面,無窮又作為無限,很多文章都探討過無限、絕對、上帝和芝諾悖論等的問題。在數學方面,無窮與下述的主題或概念相關:數學的極限、阿列夫數、集合論中的類、戴德金的無限群、羅素悖論、超實數、射影幾何、擴充套件的實數軸以及絕對無限。在一些主題或概念中,無窮被認為是一個超越邊界而增加的概念,而不是一個數。由於一個無窮集合的冪集總是具有比它本身更高的基數,所以透過構造一系列的冪集,可以證明無窮的基數的個數是無窮的。然而有趣的是,無窮基數的個數比任何基數都多,從而它是一個比任何無窮大都要大的"無窮大",它不能對應於一個基數,否則會產生康托爾悖論的一種形式。換號數學數字反應現像多餘感應驗收破譯駁運數字。