回覆列表
  • 1 # 使用者6765375850720

    導數的定義

    設函式y=f(x)在點x=x0及其附近有定義,當自變數x在x0處有改變數△x(△x可正可負),則函式y相應地有改變數△y=f(x0+△x)-f(x0),這兩個改變數的比叫做函式y=f(x)在x0到x0+△x之間的平均變化率.

    如果當△x→0時,有極限,我們就說函式y=f(x)在點x0處可導,這個極限叫做f(x)在點x0處的導數(即瞬時變化率,簡稱變化率),記作f′(x0)或,即

    函式f(x)在點x0處的導數就是函式平均變化率當自變數的改變數趨向於零時的極限.如果極限不存在,我們就說函式f(x)在點x0處不可導.

    微積分是研究函式的微分、積分以及有關概念和應用的數學分支。微積分是建立在實數、函式和極限的基礎上的。

    極限和微積分的概念可以追溯到古代。到了十七世紀後半葉,牛頓和萊布尼茨完成了許多數學家都參加過準備的工作,分別獨立地建立了微積分學。他們建立微積分的出發點是直觀的無窮小量,理論基礎是不牢固的。直到十九世紀,柯西和維爾斯特拉斯建立了極限理論,康托爾等建立了嚴格的實數理論,這門學科才得以嚴密化。

    微積分是與實際應用聯絡著發展起來的,它在天文學、力學、化學、生物學、工程學、經濟學等自然科學、社會科學及應用科學個分支中,有越來越廣泛的應用。特別是計算機的發明更有助於這些應用的不斷髮展。

    微積分學是微分學和積分學的總稱。

  • 中秋節和大豐收的關聯?
  • 形容憤怒的四字成語是什麼?