一、定義
如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。也就是說,如果x?a,那麼x叫做a的立方根。
二、性質
1、在實數範圍內,任何實數的立方根只有一個
2、在實數範圍內,負數不能開平方,但可以開立方。
3、0的立方根是0
4、立方和開立方運算,互為逆運算。
5、在複數範圍內,任何非0的數都有且僅有3個立方根(一實根,二共軛虛根),它們均勻分佈在以原點為圓心,算術根為半徑的圓周上,三個立方根對應的點構成正三角形。
6、在複數範圍內,負數既可以開平方,又可以開立方。
擴充套件資料
平方根
a的算術平方根記為
,讀作“根號a”,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。 [1]
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
負數在實數系內不能開平方。只有在複數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。規定:
,或
。一般地,“√ ̄”僅用來表示算術平方根,即非負數的非負平方根。
規定:0的算術平方根為0。
一、定義
如果一個數的立方等於a,那麼這個數叫a的立方根,也稱為三次方根。也就是說,如果x?a,那麼x叫做a的立方根。
二、性質
1、在實數範圍內,任何實數的立方根只有一個
2、在實數範圍內,負數不能開平方,但可以開立方。
3、0的立方根是0
4、立方和開立方運算,互為逆運算。
5、在複數範圍內,任何非0的數都有且僅有3個立方根(一實根,二共軛虛根),它們均勻分佈在以原點為圓心,算術根為半徑的圓周上,三個立方根對應的點構成正三角形。
6、在複數範圍內,負數既可以開平方,又可以開立方。
擴充套件資料
平方根
a的算術平方根記為
,讀作“根號a”,a叫做被開方數(radicand)。求一個非負數a的平方根的運算叫做開平方。 [1]
結論:被開方數越大,對應的算術平方根也越大(對所有正數都成立)。
一個正數如果有平方根,那麼必定有兩個,它們互為相反數。顯然,如果知道了這兩個平方根的一個,那麼就可以及時的根據相反數的概念得到它的另一個平方根。
負數在實數系內不能開平方。只有在複數系內,負數才可以開平方。負數的平方根為一對共軛純虛數。例如:-1的平方根為±i,-9的平方根為±3i,其中i為虛數單位。規定:
,或
。一般地,“√ ̄”僅用來表示算術平方根,即非負數的非負平方根。
規定:0的算術平方根為0。