圓周角的度數等於它所對弧上的圓心角度數的一半
已知在⊙O中,∠BOC與圓周角∠BAC同對弧BC,求證:∠BOC=2∠BAC.
證明:
情況1:
如圖1,當圓心O在∠BAC的一邊上時,即A、O、B在同一直線上時:
圖1
∵OA、OC是半徑
解:∴OA=OC
∴∠BAC=∠ACO(等邊對等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情況2:
如圖2,,當圓心O在∠BAC的內部時:
連線AO,並延長AO交⊙O於D
圖2
∵OA、OB、OC是半徑
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等邊對等角)
∵∠BOD、∠COD分別是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等於兩個不相鄰兩個內角的和)
∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等於兩個不相鄰兩個內角的和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
情況3:
如圖3,當圓心O在∠BAC的外部時:
圖3
連線AO,並延長AO交⊙O於D連線OA,OB。
解:∵OA、OB、OC、是半徑
∴OA=OB=OC
∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC)
∵∠DOB、∠DOC分別是△AOB、△AOC的外角
∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等於兩個不相鄰兩個內角的和)
∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等於兩個不相鄰兩個內角的和)
∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
利用這個定理,把把相等的圓弧對的圓周角,轉化為圓心角,利用三角形全等就可以證明。
圓周角的度數等於它所對弧上的圓心角度數的一半
已知在⊙O中,∠BOC與圓周角∠BAC同對弧BC,求證:∠BOC=2∠BAC.
證明:
情況1:
如圖1,當圓心O在∠BAC的一邊上時,即A、O、B在同一直線上時:
圖1
∵OA、OC是半徑
解:∴OA=OC
∴∠BAC=∠ACO(等邊對等角)
∵∠BOC是△AOC的外角
∴∠BOC=∠BAC+∠ACO=2∠BAC
情況2:
如圖2,,當圓心O在∠BAC的內部時:
連線AO,並延長AO交⊙O於D
圖2
∵OA、OB、OC是半徑
解:∴OA=OB=OC
∴∠BAD=∠ABO,∠CAD=∠ACO(等邊對等角)
∵∠BOD、∠COD分別是△AOB、△AOC的外角
∴∠BOD=∠BAD+∠ABO=2∠BAD(三角形的外角等於兩個不相鄰兩個內角的和)
∠COD=∠CAD+∠ACO=2∠CAD(三角形的外角等於兩個不相鄰兩個內角的和)
∴∠BOC=∠BOD+∠COD=2(∠BAD+∠CAD)=2∠BAC
情況3:
如圖3,當圓心O在∠BAC的外部時:
圖3
連線AO,並延長AO交⊙O於D連線OA,OB。
解:∵OA、OB、OC、是半徑
∴OA=OB=OC
∴∠BAD=∠ABO(等腰三角形底角相等),∠CAD=∠ACO(OA=OC)
∵∠DOB、∠DOC分別是△AOB、△AOC的外角
∴∠DOB=∠BAD+∠ABO=2∠BAD(三角形的外角等於兩個不相鄰兩個內角的和)
∠DOC=∠CAD+∠ACO=2∠CAD(三角形的外角等於兩個不相鄰兩個內角的和)
∴∠BOC=∠DOC-∠DOB=2(∠CAD-∠BAD)=2∠BAC
利用這個定理,把把相等的圓弧對的圓周角,轉化為圓心角,利用三角形全等就可以證明。