滾珠絲槓的承受的載荷中,徑向載荷和軸向載荷均同時存在,選用軸承時都要考慮到。能夠同時承受上述載荷的常用軸承有:角接觸軸承和圓錐滾子軸承。前者側重用於輕載、高速的場合,後者側重用於過載低速的場合。需要注意的是,上述兩種軸承一般為成對使用,並且相對安裝(面對面或背對背),這樣可以限制絲槓的軸向竄動。
早期的直線運動軸承形式,就是在一排撬板下放置一排木杆。現代直線運動軸承使用的是同一種工作原理,只不過有時用球代替滾子。最簡單的旋轉軸承是軸套軸承,它只是一個夾在車輪和輪軸之間的襯套。這種設計隨後被滾動軸承替代,就是用很多圓柱形的滾子替代原先的襯套,每個滾動體就像一個單獨的車輪。
在義大利奈米湖發現的一艘建造於公元前40年的古羅馬船隻上,發現了早期的球軸承的例項:一個木製球軸承是用來支撐旋轉桌面。據說列昂納多·達·芬奇在1500年左右曾經對一種球軸承進行過描述。球軸承的各種不成熟因素中,有很重要的一點就是球之間會發生碰撞,造成額外的摩擦。但是可以透過把球放進一個個小籠裡防止這種現象。17世紀,伽利略對“籠裝球”的球軸承做過最早的描述。十七世紀末,英國的C.瓦洛設計製造球軸承,並裝在郵車上試用以及英國的P.沃思取得球軸承的專利。最早投入實用的帶有保持架的滾動軸承是鐘錶匠約翰·哈里遜於1760年為製作H3計時計而發明的。十八世紀末德國的H.R.赫茲發表關於球軸承接觸應力的論文。在赫茲成就的基礎上,德國的R.施特里貝克、瑞典的A.帕姆格倫等人進行了大量的試驗,對發展滾動軸承的設計理論和疲勞壽命計算作出了貢獻。隨後,俄國的N.P.彼得羅夫應用牛頓粘性定律計算軸承摩擦。第一個關於球溝道的專利是卡馬森的菲利普·沃恩在1794年獲得的。
1883年,弗里德里希·費舍爾提出了使用合適的生產機器磨製大小相同、圓度準確的鋼球的主張,奠定了軸承工業的基礎。英國的O.雷諾對托爾的發現進行了數學分析,匯出了雷諾方程,從此奠定了流體動壓潤滑理論的基礎。
滾珠絲槓的承受的載荷中,徑向載荷和軸向載荷均同時存在,選用軸承時都要考慮到。能夠同時承受上述載荷的常用軸承有:角接觸軸承和圓錐滾子軸承。前者側重用於輕載、高速的場合,後者側重用於過載低速的場合。需要注意的是,上述兩種軸承一般為成對使用,並且相對安裝(面對面或背對背),這樣可以限制絲槓的軸向竄動。
早期的直線運動軸承形式,就是在一排撬板下放置一排木杆。現代直線運動軸承使用的是同一種工作原理,只不過有時用球代替滾子。最簡單的旋轉軸承是軸套軸承,它只是一個夾在車輪和輪軸之間的襯套。這種設計隨後被滾動軸承替代,就是用很多圓柱形的滾子替代原先的襯套,每個滾動體就像一個單獨的車輪。
在義大利奈米湖發現的一艘建造於公元前40年的古羅馬船隻上,發現了早期的球軸承的例項:一個木製球軸承是用來支撐旋轉桌面。據說列昂納多·達·芬奇在1500年左右曾經對一種球軸承進行過描述。球軸承的各種不成熟因素中,有很重要的一點就是球之間會發生碰撞,造成額外的摩擦。但是可以透過把球放進一個個小籠裡防止這種現象。17世紀,伽利略對“籠裝球”的球軸承做過最早的描述。十七世紀末,英國的C.瓦洛設計製造球軸承,並裝在郵車上試用以及英國的P.沃思取得球軸承的專利。最早投入實用的帶有保持架的滾動軸承是鐘錶匠約翰·哈里遜於1760年為製作H3計時計而發明的。十八世紀末德國的H.R.赫茲發表關於球軸承接觸應力的論文。在赫茲成就的基礎上,德國的R.施特里貝克、瑞典的A.帕姆格倫等人進行了大量的試驗,對發展滾動軸承的設計理論和疲勞壽命計算作出了貢獻。隨後,俄國的N.P.彼得羅夫應用牛頓粘性定律計算軸承摩擦。第一個關於球溝道的專利是卡馬森的菲利普·沃恩在1794年獲得的。
1883年,弗里德里希·費舍爾提出了使用合適的生產機器磨製大小相同、圓度準確的鋼球的主張,奠定了軸承工業的基礎。英國的O.雷諾對托爾的發現進行了數學分析,匯出了雷諾方程,從此奠定了流體動壓潤滑理論的基礎。