回覆列表
  • 1 # 使用者2013589007217

    由卡爾丹公式:x1=(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)x2=w(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w^2(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)x3=w^2(-q/2+((q/2)^2+(p/3)^3)^(1/2))^(1/3)+w(-q/2-((q/2)^2+(p/3)^3)^(1/2))^(1/3)其中w=(-1+i3^(1/2))/2,w^2=(-1-i3^(1/2))/2由ax^3+bx^2+cx+d=0可知上式除以a並設x=y-b/3a,轉化成y^3+py+1=0的形式,求出y1,y2,y3後有x1=y1-b/3a,x2=y2-b/3a,x2=y1-b/3a即得特徵根名詞解釋:微分方程指描述未知函式的導數與自變數之間的關係的方程。微分方程的解是一個符合方程的函式。而在初等數學的代數方程,其解是常數值。微分方程的應用十分廣泛,可以解決許多與導數有關的問題[1]:p.1。物理中許多涉及變力的運動學、動力學問題,如空氣的阻力為速度函式的落體運動等問題,很多可以用微分方程求解。此外,微分方程在化學、工程學、經濟學和人口統計等領域都有應用。數學領域對微分方程的研究著重在幾個不同的面向,但大多數都是關心微分方程的解。只有少數簡單的微分方程可以求得解析解。不過即使沒有找到其解析解,仍然可以確認其解的部份性質。在無法求得解析解時,可以利用數值分析的方式,利用電腦來找到其數值解。動力系統理論強調對於微分方程系統的量化分析,而許多數值方法可以計算微分方程的數值解,且有一定的準確度。

  • 中秋節和大豐收的關聯?
  • coreldraw如何畫地質圖?