(cosna+isinna)=(cosa+isina)^n
=C(0,n)(cosa)^n+C(1,n)(cosa)^(n-1)(isina)+C(2,n)(cosa)^(n-2)(isina)^2+...+C(n,n)(isina)^n
i^0=1 i^1=i i^2=-1 i^3=-i i^4=1
=(C(0,n)(cosa)^n-C(2,n)(cosa)^(n-2)(sina)^2+C(4,n)(cosa)^(n-4)(sina)^4+....)+i(C(1,n)(cosa)^(n-1)sina-C(3,n)(cosa)^(n-3)(sina)^3+C(5,n)(cosa)^(n-5)(sina)^5+....)
實部對應實部,虛部對應虛部,則有
cosna=C(0,n)(cosa)^n-C(2,n)(cosa)^(n-2)(sina)^2+C(4,n)(cosa)^(n-4)(sina)^4+....
sinna=C(1,n)(cosa)^(n-1)sina-C(3,n)(cosa)^(n-3)(sina)^3+C(5,n)(cosa)^(n-5)(sina)^5+....
若要化作單一的sina 或者cosa來表達,使用(sina)^2+(cosa)^2=1來替代。
(cosna+isinna)=(cosa+isina)^n
=C(0,n)(cosa)^n+C(1,n)(cosa)^(n-1)(isina)+C(2,n)(cosa)^(n-2)(isina)^2+...+C(n,n)(isina)^n
i^0=1 i^1=i i^2=-1 i^3=-i i^4=1
=(C(0,n)(cosa)^n-C(2,n)(cosa)^(n-2)(sina)^2+C(4,n)(cosa)^(n-4)(sina)^4+....)+i(C(1,n)(cosa)^(n-1)sina-C(3,n)(cosa)^(n-3)(sina)^3+C(5,n)(cosa)^(n-5)(sina)^5+....)
實部對應實部,虛部對應虛部,則有
cosna=C(0,n)(cosa)^n-C(2,n)(cosa)^(n-2)(sina)^2+C(4,n)(cosa)^(n-4)(sina)^4+....
sinna=C(1,n)(cosa)^(n-1)sina-C(3,n)(cosa)^(n-3)(sina)^3+C(5,n)(cosa)^(n-5)(sina)^5+....
若要化作單一的sina 或者cosa來表達,使用(sina)^2+(cosa)^2=1來替代。