牛頓迭代法(Newton"s method)又稱為牛頓-拉夫遜方法(Newton-Raphson method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x) = 0的根。牛頓迭代法是求方程根的重要方法之一,其最大優點是在方程f(x) = 0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根。另外該方法廣泛用於計算機程式設計中。
設r是f(x) = 0的根,選取x0作為r初始近似值,過點(x0,f(x0))做曲線y = f(x)的切線L,L的方程為y = f(x0)+f"(x0)(x-x0),求出L與x軸交點的橫座標 x1 = x0-f(x0)/f"(x0),稱x1為r的一次近似值。
過點(x1,f(x1))做曲線y = f(x)的切線,並求該切線與x軸交點的橫座標 x2 = x1-f(x1)/f"(x1),稱x2為r的二次近似值。重複以上過程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f"(x(n)),稱為r的n+1次近似值,上式稱為牛頓迭代公式。
根據牛頓迭代的原理,可以得到以下的迭代公式:X(n+1)=[X(n)+p/Xn]/2
牛頓迭代法(Newton"s method)又稱為牛頓-拉夫遜方法(Newton-Raphson method),它是牛頓在17世紀提出的一種在實數域和複數域上近似求解方程的方法。多數方程不存在求根公式,因此求精確根非常困難,甚至不可能,從而尋找方程的近似根就顯得特別重要。方法使用函式f(x)的泰勒級數的前面幾項來尋找方程f(x) = 0的根。牛頓迭代法是求方程根的重要方法之一,其最大優點是在方程f(x) = 0的單根附近具有平方收斂,而且該法還可以用來求方程的重根、復根。另外該方法廣泛用於計算機程式設計中。
設r是f(x) = 0的根,選取x0作為r初始近似值,過點(x0,f(x0))做曲線y = f(x)的切線L,L的方程為y = f(x0)+f"(x0)(x-x0),求出L與x軸交點的橫座標 x1 = x0-f(x0)/f"(x0),稱x1為r的一次近似值。
過點(x1,f(x1))做曲線y = f(x)的切線,並求該切線與x軸交點的橫座標 x2 = x1-f(x1)/f"(x1),稱x2為r的二次近似值。重複以上過程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f"(x(n)),稱為r的n+1次近似值,上式稱為牛頓迭代公式。
根據牛頓迭代的原理,可以得到以下的迭代公式:X(n+1)=[X(n)+p/Xn]/2