或是“∪”,且是“∩”,和沒有表示。
給定兩個集合A,B,把他們所有的元素合併在一起組成的集合,叫做集合A與集合B的並集,記作A∪B,讀作A並B。
集合論中,設A,B是兩個集合,由所有屬於集合A且屬於集合B的元素所組成的集合,叫做集合A與集合B的交集(intersection),記作A∩B。
(1)集合 {1,2,3} 和 {2,3,4} 的交集為 {2,3}。即{1,2,3}∩{2,3,4}={2,3}。
(2)數字9不屬於質數集合 {2,3,5,7,11, ...} 和奇數集合 {1,3,5,7,9,11, ...}的交集。即9 {x|x是質數}∩{x|x是奇數}。
擴充套件資料:
二元並集(兩個集合的並集)是一種結合運算,即A∪(B∪C) = (A∪B) ∪C。事實上,A∪B∪C也等於這兩個集合,因此圓括號在僅進行並集運算的時候可以省略。相似的,並集運算滿足交換律,即集合的順序任意。
空集是並集運算的單位元。 即 ∪A=A。對任意集合A,可將空集當作零個集合的並集。
結合交集和補集運算,並集運算使任意冪整合為布林代數。 例如,並集和交集相互滿足分配律,而且這三種運算滿足德·摩根律。 若將並集運算換成對稱差運算,可以獲得相應的布林環。
或是“∪”,且是“∩”,和沒有表示。
給定兩個集合A,B,把他們所有的元素合併在一起組成的集合,叫做集合A與集合B的並集,記作A∪B,讀作A並B。
集合論中,設A,B是兩個集合,由所有屬於集合A且屬於集合B的元素所組成的集合,叫做集合A與集合B的交集(intersection),記作A∩B。
(1)集合 {1,2,3} 和 {2,3,4} 的交集為 {2,3}。即{1,2,3}∩{2,3,4}={2,3}。
(2)數字9不屬於質數集合 {2,3,5,7,11, ...} 和奇數集合 {1,3,5,7,9,11, ...}的交集。即9 {x|x是質數}∩{x|x是奇數}。
擴充套件資料:
二元並集(兩個集合的並集)是一種結合運算,即A∪(B∪C) = (A∪B) ∪C。事實上,A∪B∪C也等於這兩個集合,因此圓括號在僅進行並集運算的時候可以省略。相似的,並集運算滿足交換律,即集合的順序任意。
空集是並集運算的單位元。 即 ∪A=A。對任意集合A,可將空集當作零個集合的並集。
結合交集和補集運算,並集運算使任意冪整合為布林代數。 例如,並集和交集相互滿足分配律,而且這三種運算滿足德·摩根律。 若將並集運算換成對稱差運算,可以獲得相應的布林環。