一、性質
1.等腰三角形的兩個底角度數相等(簡寫成“等邊對等角”)。
2.等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合(簡寫成“等腰三角形三線合一”)。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半。
6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(需用等面積法證明)。
7.一般的等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸。但等邊三角形(特殊的等腰三角形)有三條對稱軸。每個角的角平分線所在的直線,三條中線所在的直線,和高所在的直線就是等邊三角形的對稱軸。
8.等腰三角形中腰長的平方等於底邊上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰與它的高的關係:腰大於高;腰的平方等於高的平方加底的一半的平方。
二、判定的方式
定義法:在同一三角形中,有兩條邊相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果兩個角相等,那麼這兩個角所對的邊也相等(簡稱:等角對等邊)。
除了以上兩種基本方法以外,還有如下判定的方式:
1、在一個三角形中,如果一個角的平分線與該角對邊上的中線重合,那麼這個三角形是等腰三角形,且該角為頂角。
2、在一個三角形中,如果一個角的平分線與該角對邊上的高重合,那麼這個三角形是等腰三角形,且該角為頂角。
3、在一個三角形中,如果一條邊上的中線與該邊上的高重合,那麼這個三角形是等腰三角形,且該邊為底邊。
顯然,以上三條定理是“三線合一”的逆定理。
4、有兩條角平分線(或中線,或高)相等的三角形是等腰三角形。
一、性質
1.等腰三角形的兩個底角度數相等(簡寫成“等邊對等角”)。
2.等腰三角形的頂角平分線,底邊上的中線,底邊上的高相互重合(簡寫成“等腰三角形三線合一”)。
3.等腰三角形的兩底角的平分線相等(兩條腰上的中線相等,兩條腰上的高相等)。
4.等腰三角形底邊上的垂直平分線到兩條腰的距離相等。
5.等腰三角形的一腰上的高與底邊的夾角等於頂角的一半。
6.等腰三角形底邊上任意一點到兩腰距離之和等於一腰上的高(需用等面積法證明)。
7.一般的等腰三角形是軸對稱圖形,只有一條對稱軸,頂角平分線所在的直線是它的對稱軸。但等邊三角形(特殊的等腰三角形)有三條對稱軸。每個角的角平分線所在的直線,三條中線所在的直線,和高所在的直線就是等邊三角形的對稱軸。
8.等腰三角形中腰長的平方等於底邊上高的平方加底的一半的平方(勾股定理)。
9.等腰三角形的腰與它的高的關係:腰大於高;腰的平方等於高的平方加底的一半的平方。
二、判定的方式
定義法:在同一三角形中,有兩條邊相等的三角形是等腰三角形。
判定定理:在同一三角形中,如果兩個角相等,那麼這兩個角所對的邊也相等(簡稱:等角對等邊)。
除了以上兩種基本方法以外,還有如下判定的方式:
1、在一個三角形中,如果一個角的平分線與該角對邊上的中線重合,那麼這個三角形是等腰三角形,且該角為頂角。
2、在一個三角形中,如果一個角的平分線與該角對邊上的高重合,那麼這個三角形是等腰三角形,且該角為頂角。
3、在一個三角形中,如果一條邊上的中線與該邊上的高重合,那麼這個三角形是等腰三角形,且該邊為底邊。
顯然,以上三條定理是“三線合一”的逆定理。
4、有兩條角平分線(或中線,或高)相等的三角形是等腰三角形。