一、 等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的通項公式為:
an=a1+(n-1)d (1)
前n項和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬於正整數
從(1)式可以看出,an是n的一次數函(d≠0)或常數函式(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函式(d≠0)或一次函式(d=0,a1≠0),且常數項為0。
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項。
且任意兩項am,an的關係為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
等差數列的應用:
日常生活中,人們常常用到等差數列如:在給各種產品的尺寸劃分級別
時,當其中的最大尺寸與最小尺寸相差不大時,常按等差數列進行分級。
若為等差數列,且有an=m,am=n.則a(m+n)=0。
一、 等差數列
如果一個數列從第二項起,每一項與它的前一項的差等於同一個常數,這個數列就叫做等差數列,這個常數叫做等差數列的公差,公差常用字母d表示。
等差數列的通項公式為:
an=a1+(n-1)d (1)
前n項和公式為:
Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)
以上n均屬於正整數
從(1)式可以看出,an是n的一次數函(d≠0)或常數函式(d=0),(n,an)排在一條直線上,由(2)式知,Sn是n的二次函式(d≠0)或一次函式(d=0,a1≠0),且常數項為0。
在等差數列中,等差中項:一般設為Ar,Am+An=2Ar,所以Ar為Am,An的等差中項。
且任意兩項am,an的關係為:
an=am+(n-m)d
它可以看作等差數列廣義的通項公式。
從等差數列的定義、通項公式,前n項和公式還可推出:
a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}
若m,n,p,q∈N*,且m+n=p+q,則有
am+an=ap+aq
Sm-1=(2n-1)an,S2n+1=(2n+1)an+1
Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差數列,等等。
和=(首項+末項)×項數÷2
項數=(末項-首項)÷公差+1
首項=2和÷項數-末項
末項=2和÷項數-首項
末項=首項+(項數-1)×公差
等差數列的應用:
日常生活中,人們常常用到等差數列如:在給各種產品的尺寸劃分級別
時,當其中的最大尺寸與最小尺寸相差不大時,常按等差數列進行分級。
若為等差數列,且有an=m,am=n.則a(m+n)=0。