回覆列表
  • 1 # 使用者3120385727362

    解:

    設數列{an}是等差數列,其公差為d,d≠0,根據等差數列的定義:

    an - a(n-1) = d

    ∴a2- a1= d

    a3 - a2 = d

    a4 - a3 = d

    .....

    an - a(n-1) = d

    上述各式相加:

    an - a1 = (n-1)d

    即:an = a1 + (n-1)d

    令Sn = a1 + a2 +.....+ an

    根據an = a1 + (n-1)d,易知,

    a(n-k) + a(k+1) = a1+(n-k-1)d+a1+kd

    =2a1+(n-1)d ,其中k = 0,1,2,3...n-1

    當n固定不變時,上式為定值

    因此:

    Sn = a1 + a2 + a3 +.....+ an

    Sn = an + a(n-1)+........+ a1

    上式相加:

    2Sn= n[2a1+(n-1)d]

    Sn=na1 + n(n-1)d/2

    根據an = a1 + (n-1)d

    上式也可寫成:

    Sn =n(a1+an)/2

  • 中秋節和大豐收的關聯?
  • excel的開啟密碼如何破解?