用代入消元法的一般步驟是:
1.選一個係數比較簡單的方程進行變形,變成 y = ax +b 或 x = ay + b的形式;
2.將y = ax + b 或 x = ay + b代入另一個方程,消去一個未知數,從而將另一個方程變成一元一次方程;
3.解這個一元一次方程,求出 x 或 y 值;
4.將已求出的 x 或 y 值代入方程組中的任意一個方程(y = ax +b 或 x = ay + b),求出另一個未知數;
5.把求得的兩個未知數的值用大括號聯立起來,這就是二元一次方程的解。
例:解方程組 :
x+y=5①
6x+13y=89②
得 y=59/7
得x=-24/7
∴ x=-24/7,y=59/7 為方程組的解。
擴充套件資料:
用加減法解二元一次方程組的一般步驟:
第一步:在所解的方程組中的兩個方程,如果某個未知數的係數互為相反數,可以把這兩個方程的兩邊分別相加,消去這個未知數;如果未知數的係數相等,可以直接把兩個方程的兩邊相減,消去這個未知數。
第二步:如果方程組中不存在某個未知數的係數絕對值相等,那麼應選出一組係數(選最小公倍數較小的一組係數),求出它們的最小公倍數(如果一個係數是另一個係數的整數倍,該係數即為最小公倍數),然後將原方程組變形,使新方程組的這組係數的絕對值相等(都等於原係數的最小公倍數),再加減消元.。
第三步:對於較複雜的二元一次方程組,應先化簡(去分母,去括號,合併同類項等),通常要把每個方程整理成含未知數的項在方程的左邊,常數項在方程的右邊的形式,再作如上加減消元的考慮。
注意:
(1)當兩個方程中同一未知數的係數的絕對值相等或成整數倍時,用加減法較簡便。
(2)如果所給方程組或所列方程組較為複雜,不易觀察,就先變形(去分母、去括號、移項、合併等),再判斷用哪種方法消元好。
用代入消元法的一般步驟是:
1.選一個係數比較簡單的方程進行變形,變成 y = ax +b 或 x = ay + b的形式;
2.將y = ax + b 或 x = ay + b代入另一個方程,消去一個未知數,從而將另一個方程變成一元一次方程;
3.解這個一元一次方程,求出 x 或 y 值;
4.將已求出的 x 或 y 值代入方程組中的任意一個方程(y = ax +b 或 x = ay + b),求出另一個未知數;
5.把求得的兩個未知數的值用大括號聯立起來,這就是二元一次方程的解。
例:解方程組 :
x+y=5①
6x+13y=89②
得 y=59/7
得x=-24/7
∴ x=-24/7,y=59/7 為方程組的解。
擴充套件資料:
用加減法解二元一次方程組的一般步驟:
第一步:在所解的方程組中的兩個方程,如果某個未知數的係數互為相反數,可以把這兩個方程的兩邊分別相加,消去這個未知數;如果未知數的係數相等,可以直接把兩個方程的兩邊相減,消去這個未知數。
第二步:如果方程組中不存在某個未知數的係數絕對值相等,那麼應選出一組係數(選最小公倍數較小的一組係數),求出它們的最小公倍數(如果一個係數是另一個係數的整數倍,該係數即為最小公倍數),然後將原方程組變形,使新方程組的這組係數的絕對值相等(都等於原係數的最小公倍數),再加減消元.。
第三步:對於較複雜的二元一次方程組,應先化簡(去分母,去括號,合併同類項等),通常要把每個方程整理成含未知數的項在方程的左邊,常數項在方程的右邊的形式,再作如上加減消元的考慮。
注意:
(1)當兩個方程中同一未知數的係數的絕對值相等或成整數倍時,用加減法較簡便。
(2)如果所給方程組或所列方程組較為複雜,不易觀察,就先變形(去分母、去括號、移項、合併等),再判斷用哪種方法消元好。