回覆列表
-
1 # a不會愛的小笨蛋
-
2 # 使用者6857797169671
x1: = Acos(ωt + π) = - Acos(ωt)x2: = A/2 * cos(ωt)x = x1 + x2 = - Acos(ωt) + A/2*cos(ωt) = - A/2 * cos(ωt) = A/2 * cos(ωt + π)
x1: = Acos(ωt + π) = - Acos(ωt)x2: = A/2 * cos(ωt)x = x1 + x2 = - Acos(ωt) + A/2*cos(ωt) = - A/2 * cos(ωt) = A/2 * cos(ωt + π)
在古代,實際上長期使用 π=3這個數值,巴比倫、印度、中國都是如此。到公元前2世紀,中國的《周髀算經》裡已有周三徑一的記載。東漢的數學家又將 π值改為 (約為3.16)。直正使圓周率計算建立在科學的基礎上,首先應歸功於阿基米德。他專門寫了一篇論文《圓的度量》,用幾何方法證明了圓周率與圓直徑之比小於22/7而大於223/71 。這是第一次在科學中創用上、下界來確定近似值。第一次用正確方法計算π 值的,是魏晉時期的劉徽,在公元263年,他首創了用圓的內接正多邊形的面積來逼近圓面積的方法,算得π 值為3.14。中國稱這種方法為割圓術。直到1200年後,西方人才找到了類似的方法。後人為紀念劉徽的貢獻,將3.14稱為徽率。 公元460年,南朝的祖沖之利用劉徽的割圓術,把π 值算到小點後第七位3.1415926,這個具有七位小數的圓周率在當時是世界首次。祖沖之還找到了兩個分數:22/7 和355/113 ,用分數來代替π ,極大地簡化了計算,這種思想比西方也早一千多年。 祖沖之的圓周率,保持了一千多年的世界記錄。終於在1596年,由荷蘭數學家盧道夫打破了。他把π 值推到小數點後第15位小數,最後推到第35位。為了紀念他這項成就,人們在他1610年去世後的墓碑上,刻上:3.14159265358979323846264338327950288這個數,從此也把它稱為"盧道夫數"。