累加就是利用前後幾項(一般是2或3項)有相同的項,而且係數相反,例如an=1/n-1/(n+1)...,與an-1=1/(n-1)-1/n,有相同的項1/n,係數相反,
那麼sn=a1+a2+a3+....+an=1-1/2+1/2-1/3+1/3-1/4+.....+1/(n-1)-1/n+1/n-1/(n-1)=1-1/(n-1)..
再例如
bn=1/n-1/(n+2),那麼bn-1=1/(n-1)-1/(n+1),bn-2=1/(n-2)-1/n,那麼bn與bn-2間有相同項1/n,係數相反。。。sn=1-1/3+1/2-1/4+1/3-1/5+......+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)=1+1/2-1/(n+1)-1/(n+2)
累乘法類似。
bn=n/(n+1),bn-1=(n-1)/n,
cn=b1*b2*b3*b4*.....*bn-1*bn=1/2*2/3*3/4*......(n-1)/n*n/(n+1)=1/(n+1)...
bn=n/(n+2),bn-1=(n-1)/(n+1),bn-2=(n-2)/n,
cn=b1*b2*b3*....bn-2*bn-1*bn=1/3*2/4*3/5*4/6*......*(n-2)/n*(n-1)/(n+1)*n/(n+2)
=1*2/((n+1)*(n+2))
累加就是利用前後幾項(一般是2或3項)有相同的項,而且係數相反,例如an=1/n-1/(n+1)...,與an-1=1/(n-1)-1/n,有相同的項1/n,係數相反,
那麼sn=a1+a2+a3+....+an=1-1/2+1/2-1/3+1/3-1/4+.....+1/(n-1)-1/n+1/n-1/(n-1)=1-1/(n-1)..
再例如
bn=1/n-1/(n+2),那麼bn-1=1/(n-1)-1/(n+1),bn-2=1/(n-2)-1/n,那麼bn與bn-2間有相同項1/n,係數相反。。。sn=1-1/3+1/2-1/4+1/3-1/5+......+1/(n-2)-1/n+1/(n-1)-1/(n+1)+1/n-1/(n+2)=1+1/2-1/(n+1)-1/(n+2)
累乘法類似。
bn=n/(n+1),bn-1=(n-1)/n,
cn=b1*b2*b3*b4*.....*bn-1*bn=1/2*2/3*3/4*......(n-1)/n*n/(n+1)=1/(n+1)...
bn=n/(n+2),bn-1=(n-1)/(n+1),bn-2=(n-2)/n,
cn=b1*b2*b3*....bn-2*bn-1*bn=1/3*2/4*3/5*4/6*......*(n-2)/n*(n-1)/(n+1)*n/(n+2)
=1*2/((n+1)*(n+2))