1.乘法運算規則:
規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其實就是把兩個複數相乘,類似兩個多項式相乘,在所得的結果中把i2換成-1,並且把實部與虛部分別合併.兩個複數的積仍然是一個複數.
3. 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈R)叫複數a+bi除以複數c+di的商,記為:(a+bi) (c+di)或者
4.除法運算規則:
①設複數a+bi(a,b∈R),除以c+di(c,d∈R),其商為x+yi(x,y∈R),
即(a+bi)÷(c+di)=x+yi
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.
∴(cx-dy)+(dx+cy)i=a+bi.
由複數相等定義可知
解這個方程組,得
於是有:(a+bi)÷(c+di)= i.
②利用(c+di)(c-di)=c2+d2.於是將 的分母有理化得:
原式=(a+bi)÷(c+di)= .i
1.乘法運算規則:
規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i.
其實就是把兩個複數相乘,類似兩個多項式相乘,在所得的結果中把i2換成-1,並且把實部與虛部分別合併.兩個複數的積仍然是一個複數.
3. 複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈R)叫複數a+bi除以複數c+di的商,記為:(a+bi) (c+di)或者
4.除法運算規則:
①設複數a+bi(a,b∈R),除以c+di(c,d∈R),其商為x+yi(x,y∈R),
即(a+bi)÷(c+di)=x+yi
∵(x+yi)(c+di)=(cx-dy)+(dx+cy)i.
∴(cx-dy)+(dx+cy)i=a+bi.
由複數相等定義可知
解這個方程組,得
於是有:(a+bi)÷(c+di)= i.
②利用(c+di)(c-di)=c2+d2.於是將 的分母有理化得:
原式=(a+bi)÷(c+di)= .i