1、加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
2、減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
3、乘法法則
規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其實就是把兩個複數相乘,類似兩個多項式相乘,展開得: ac+adi+bci+bdi2,因為i2=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。
4、除法法則
複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈R)叫複數a+bi除以複數c+di的商。
運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.。所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數。
【擴充套件資料】
複數的加法就是自變數對應的平面整體平移,複數的乘法就是平面整體旋轉和伸縮,旋轉量和放大縮小量恰好是這個複數對應向量的夾角和長度。
二維平移和縮放是一維左右平移伸縮的擴充套件,旋轉是一個至少要二維才能明顯的特徵,限制在一維上,只剩下旋轉0度或者旋轉180度,對應於一維導數正負值(小線段是否反向)。
1、加法法則
複數的加法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的和是 (a+bi)+(c+di)=(a+c)+(b+d)i。
兩個複數的和依然是複數,它的實部是原來兩個複數實部的和,它的虛部是原來兩個虛部的和。
2、減法法則
複數的減法按照以下規定的法則進行:設z1=a+bi,z2=c+di是任意兩個複數,
則它們的差是 (a+bi)-(c+di)=(a-c)+(b-d)i。
兩個複數的差依然是複數,它的實部是原來兩個複數實部的差,它的虛部是原來兩個虛部的差。
3、乘法法則
規定複數的乘法按照以下的法則進行:
設z1=a+bi,z2=c+di(a、b、c、d∈R)是任意兩個複數,那麼它們的積(a+bi)(c+di)=(ac-bd)+(bc+ad)i。
其實就是把兩個複數相乘,類似兩個多項式相乘,展開得: ac+adi+bci+bdi2,因為i2=-1,所以結果是(ac-bd)+(bc+ad)i 。兩個複數的積仍然是一個複數。
4、除法法則
複數除法定義:滿足(c+di)(x+yi)=(a+bi)的複數x+yi(x,y∈R)叫複數a+bi除以複數c+di的商。
運算方法:可以把除法換算成乘法做,在分子分母同時乘上分母的共軛.。所謂共軛你可以理解為加減號的變換,互為共軛的兩個複數相乘是個實常數。
【擴充套件資料】
複數的加法就是自變數對應的平面整體平移,複數的乘法就是平面整體旋轉和伸縮,旋轉量和放大縮小量恰好是這個複數對應向量的夾角和長度。
二維平移和縮放是一維左右平移伸縮的擴充套件,旋轉是一個至少要二維才能明顯的特徵,限制在一維上,只剩下旋轉0度或者旋轉180度,對應於一維導數正負值(小線段是否反向)。