比如136161這個數字,首先找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這裡選350,作為代表。
先計算0.5(350+136161/350),結果為369.5。然後再計算0.5(369.5+136161/369.5)得到369.0003,可以發現369.5和369.0003相差無幾,並且369²末尾數字為1。斷定369²=136161。
一般來說,能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算
首先可以發現600²<469225<700²,挑選650作為第一次計算的數。即算0.5(650+469225/650)得到685.9。而685附近只有685²末尾數字是5,因此685²=469225。從而
擴充套件知識:
1、因為每次補數需要補兩位,所以被開方數不只一個數位時,要保證補數不能夾著小數點。例如三位數,必須單獨用百位進行運算,補數時補上十位和個位的數。
2、每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以2,如果需要進位,則往前面進1,然後個位升十位。以此類推,而個位上補上新的運算數字。
簡單地講,過渡數27,是第一次商的1乘以20,把個位上的0用第二次商的7來換,過渡數343是前兩次商的17乘以20=340。
其中個位0用第三次商的3來換,第三個過渡數3462是前三次商173乘以20=3460,把個位0用第四次的商2來換,依次類推。
3、誤差值的作用。如果要求精確到更高的小數數位,可以按規則,對誤差值繼續進行運算。
比如136161這個數字,首先找到一個和136161的平方根比較接近的數,任選一個,比方說300到400間的任何一個數,這裡選350,作為代表。
先計算0.5(350+136161/350),結果為369.5。然後再計算0.5(369.5+136161/369.5)得到369.0003,可以發現369.5和369.0003相差無幾,並且369²末尾數字為1。斷定369²=136161。
一般來說,能夠開方開的盡的,用上述方法算一兩次基本結果就出來了。再舉個例子:計算
首先可以發現600²<469225<700²,挑選650作為第一次計算的數。即算0.5(650+469225/650)得到685.9。而685附近只有685²末尾數字是5,因此685²=469225。從而
擴充套件知識:
1、因為每次補數需要補兩位,所以被開方數不只一個數位時,要保證補數不能夾著小數點。例如三位數,必須單獨用百位進行運算,補數時補上十位和個位的數。
2、每一個過渡數都是由上一個過渡數變化而後,上一個過渡數的個位數乘以2,如果需要進位,則往前面進1,然後個位升十位。以此類推,而個位上補上新的運算數字。
簡單地講,過渡數27,是第一次商的1乘以20,把個位上的0用第二次商的7來換,過渡數343是前兩次商的17乘以20=340。
其中個位0用第三次商的3來換,第三個過渡數3462是前三次商173乘以20=3460,把個位0用第四次的商2來換,依次類推。
3、誤差值的作用。如果要求精確到更高的小數數位,可以按規則,對誤差值繼續進行運算。