回覆列表
  • 1 # 使用者4247186878188

    畫個直角三角形,指定一個角,然後根據勾股定理就能找到所有關係。別忘了倒數。 sin² a+cos²a=1 tan²a+1/cos²a=1

    直角三角形 就是有一個90度的角的三角形.。 還有兩個銳角,就是角度比90度小的角.。 斜邊就是 那個直角的對邊,就是整個三角形中最長的那條邊,就是不包括組成直角,剩下的那條邊 對邊就是這個角的開口方向衝著的那條邊,它不是這個角的組成部分。

    鄰邊就是組成這個角的一個邊 。 每個角都是由兩條射線組成的,這個知道吧。 那一個銳角來說,它的正弦sin 就是對邊比上斜邊, 餘弦cos,就是它的鄰邊中的那條直角邊比上斜邊,就是兩條鄰邊的長度比值,小的比大的!。 正切tan,就是對邊比上鄰邊中的那個直角邊。

    兩角和公式 sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosA  cos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinB tan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB) cot(A+B)=(cotAcotB-1)/(cotB+cotA)  cot(A-B)=(cotAcotB+1)/(cotB-cotA)

    倍角公式 tan2A=2tanA/[1-(tanA)^2] cos2a=(cosa)^2-(sina)^2=2(cosa)^2 -1=1-2(sina)^2 sin2A=2sinA*cosA

    三倍角公式 sin3a=3sina-4(sina)^3 cos3a=4(cosa)^3-3cosa tan3a=tana*tan(π/3+a)*tan(π/3-a)

    半形公式 sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2) cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2) tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) cot(A/2)=√((1+cosA)/((1-cosA)) cot(A/2)=-√((1+cosA)/((1-cosA))  tan(A/2)=(1-cosA)/sinA=sinA/(1+cosA)

    和差化積 2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B) ) 2cosAcosB=cos(A+B)+cos(A-B) -2sinAsinB=cos(A+B)-cos(A-B) sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2) tanA+tanB=sin(A+B)/cosAcosB

    積化和差公式 sin(a)sin(b)=-1/2*[cos(a+b)-cos(a-b)] cos(a)cos(b)=1/2*[cos(a+b)+cos(a-b)] sin(a)cos(b)=1/2*[sin(a+b)+sin(a-b)]

    誘導公式 sin(-a)=-sin(a) cos(-a)=cos(a) sin(pi/2-a)=cos(a) cos(pi/2-a)=sin(a) sin(pi/2+a)=cos(a) cos(pi/2+a)=-sin(a) sin(pi-a)=sin(a) cos(pi-a)=-cos(a) sin(pi+a)=-sin(a) cos(pi+a)=-cos(a) tgA=tanA=sinA/cosA

    萬能公式 sin(a)= (2tan(a/2))/(1+tan^2(a/2)) cos(a)= (1-tan^2(a/2))/(1+tan^2(a/2)) tan(a)= (2tan(a/2))/(1-tan^2(a/2))

    其它公式 a*sin(a)+b*cos(a)=sqrt(a^2+b^2)sin(a+c) [其中,tan(c)=b/a] a*sin(a)-b*cos(a)=sqrt(a^2+b^2)cos(a-c) [其中,tan(c)=a/b] 1+sin(a)=(sin(a/2)+cos(a/2))^2 1-sin(a)=(sin(a/2)-cos(a/2))^2

    其他非重點三角函式 csc(a)=1/sin(a) sec(a)=1/cos(a)

  • 中秋節和大豐收的關聯?
  • 夏天最熱的時候,當你坐在空調房裡的時候,有想過你的父母親人此時此刻在幹嘛嗎?