回覆列表
  • 1 # 鄢城秀才

    漢高祖劉邦曾問大將韓信:“你看我能帶多少兵?”韓信斜了劉邦一眼說:“你頂多能帶十萬兵吧!”漢高祖心中有三分不悅,心想:你竟敢小看我!“那你呢?”韓信傲氣十足地說:“我呀,當然是多多益善囉!”劉邦心中又添了三分不高興,勉強說:“將軍如此大才,我很佩服。現在,我有一個小小的問題向將軍請教,憑將軍的大才,答起來一定不費吹灰之力的。”韓信滿不在乎地說:“可以可以。”劉邦狡黠地一笑,傳令叫來一小隊士兵隔牆站隊,劉邦發令:“每三人站成一排。”隊站好後,小隊長進來報告:“最後一排只有二人。”“劉邦又傳令:“每五人站成一排。”小隊長報告:“最後一排只有三人。”劉邦再傳令:“每七人站成一排。”小隊長報告:“最後一排只有二人。”劉邦轉臉問韓信:“敢問將軍,這隊士兵有多少人?”韓信脫口而出:“二十三人。”劉邦大驚,心中的不快已增至十分,心想:“此人本事太大,我得想法找個岔子把他殺掉,免生後患。”一面則佯裝笑臉誇了幾句,並問:“你是怎樣算的?”韓信說:“臣幼得黃石公傳授《孫子算經》,這孫子乃鬼谷子的弟子,算經中載有此題之演算法,口訣是: 三人同行七十稀, 五樹梅花開一枝, 七子團圓正月半, 除百零五便得知。” 劉邦出的這道題,可用現代語言這樣表述: “一個正整數,被3除時餘2,被5除時餘3,被7除時餘2,如果這數不超過100,求這個數。” 《孫子算經》中給出這類問題的解法:“三三數之剩二,則置一百四十;五五數之剩三,置六十三;七七數之剩二,置三十;並之得二百三十三,以二百一十減之,即得。凡三三數之剩一,則置七十;五五數之剩一,則置二十一;七七數之剩一,則置十五,一百六以上,以一百五減之,即得。”用現代語言說明這個解法就是: 首先找出能被5與7整除而被3除餘1的數70,被3與7整除而被5除餘1的數21,被3與5整除而被7除餘1的數15。 所求數被3除餘2,則取數70×2=140,140是被5與7整除而被3除餘2的數。 所求數被5除餘3,則取數21×3=63,63是被3與7整除而被5除餘3的數。 所求數被7除餘2,則取數15×2=30,30是被3與5整除而被7除餘2的數。 又,140+63+30=233,由於63與30都能被3整除,故233與140這兩數被3除的餘數相同,都是餘2,同理233與63這兩數被5除的餘數相同,都是3,233與30被7除的餘數相同,都是2。所以233是滿足題目要求的一個數。 而3、5、7的最小公倍數是105,故233加減105的整數倍後被3、5、7除的餘數不會變,從而所得的數都能滿足題目的要求。由於所求僅是一小隊士兵的人數,這意味著人數不超過100,所以用233減去105的2倍得23即是所求。 這個演算法在中國有許多名稱,如“韓信點兵”,“鬼谷算”,“隔牆算”,“剪管術”,“神奇妙算”等等,題目與解法都載於中國古代重要的數學著作《孫子算經》中。一般認為這是三國或晉時的著作,比劉邦生活的年代要晚近五百年,演算法口訣詩則載於明朝程大位的《演算法統宗》,詩中數字隱含的口訣前面已經解釋了。宋朝的數學家秦九韶把這個問題推廣,並把解法稱之為“大衍求一術”,這個解法傳到西方後,被稱為“孫子定理”或“中國剩餘定理”。而韓信,則終於被劉邦的妻子呂后誅殺於未央宮。 請你試一試,用剛才的方法解下面這題: 一個數在200與400之間,它被3除餘2,被7除餘3,被8除餘5,求該數。 (解:112×2+120×3+105×5+168k,取k=-5得該數為269。) 什麼叫做“韓信點兵”? 韓信點兵是一個有趣的猜數遊戲。如果你隨便拿一把蠶豆(數目約在100粒左右),先3粒3粒地數,直到不滿3粒時,把餘數記下來;第二次再5粒5粒地數,最後把餘數記下來;第三次是7粒一數,把餘數記下來。然後根據每次的餘數,就可以知道你原來拿了多少粒蠶豆了。不信的話,你還可以實地試驗一下。例如,假如3粒一數餘1粒,5粒一數餘2粒,7粒一數餘2粒,那麼,原有蠶豆有多少粒呢? 這類題目看起來是很難計算的,可是中國有時候卻流傳著一種演算法,綜的名稱也很多,宋朝周密叫它“鬼谷算”,又名“隔牆算”;楊輝叫它“剪管術”;而比較通行的名稱是“韓信點兵”。最初記述這類演算法的是一本名叫《孫子算經》的書,後來在宋朝經過數學家秦九韶的推廣,又發現了一種演算法,叫做“大衍求一術”。這在數學史上是極有名的問題,外華人一般把它稱為“中國剩餘定理”。至於它的演算法,在《孫子算經》上就已經有了說明,而且後來還流傳著這麼一道歌訣: 三人同行七十稀, 五樹梅花廿一枝, 七子團圓正半月, 除百零五便得知。 這就是韓信點兵的計算方法,它的意思是:凡是用3個一數剩下的餘數,將它用70去乘(因為70是5與7的倍數,而又是以3去除餘1的數);5個一數剩下的餘數,將它用21去乘(因為21是3與7的倍數,又是以5去除餘1的數);7個一數剩下的餘數,將它用15去乘(因為15是3與5的倍數,又是以7去除餘1的數),將這些數加起來,若超過105,就減掉105,如果剩下來的數目還是比105大,就再減去105,直到得數比105小為止。這樣,所得的數就是原來的數了。根據這個道理,你可以很容易地把前面的五個題目列成算式: 1×70+2×21+2×15-105 =142-105 =37 因此,你可以知道,原來這一堆蠶豆有37粒。 1900年,德國大數學家大衛·希爾伯特歸納了當時世界上尚未解決的最困難的23個難題。後來,其中的第十問題在70年代被解決了,這是近代數學的五個重大成就。據證明人說,在解決問題的過程中,他是受到了“中國剩餘定理”的啟發的。

  • 中秋節和大豐收的關聯?
  • 為什麼有的人只要半年就發展為尿毒症了?