增根(extraneous root ),在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根.
對於分式方程,當分式中分母的值為零時,分式方程無意義,所以分式方程不允許未知數取那些使分母的值為零的值,即分式方程本身就隱含著分母不為零的條件.當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根.
簡介
在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根.
舉例
x/(x-2)-2/(x-2)=0
去分母,x-2=0
x=2
但是X=2使分母等於0(無意義),所以X=2是增根.
分式方程兩邊都乘以最簡公分母化分式方程為整公分母的值不為0,則此解是分式方程的解,若最簡公分母的值為0,則此解是增根.
例如
設方程 A(x)=0 是由方程 B(x)=0 變形得來的,如果這兩個方程的根完全相同(包括重數),那麼稱這兩個方程等價.如果 x=a 是方程 A(x)=0 的根但不是B(x)=0 的根,稱 x=a 是方程的增根;如果x=b 是方程B(x)=0 的根但不是A(x)=0 的根,稱x=b 是方程B(x)=0 的失根.
增根(extraneous root ),在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根.
對於分式方程,當分式中分母的值為零時,分式方程無意義,所以分式方程不允許未知數取那些使分母的值為零的值,即分式方程本身就隱含著分母不為零的條件.當把分式方程轉化為整式方程以後,這種限制取消了,換言之,方程中未知數的值範圍擴大了,如果轉化後的整式方程的根恰好是原方程未知數的允許值之外的值,那麼就會出現增根.
簡介
在分式方程化為整式方程的過程中,若整式方程的根使最簡公分母為0,(根使整式方程成立,而在分式方程中分母為0)那麼這個根叫做原分式方程的增根.
舉例
x/(x-2)-2/(x-2)=0
去分母,x-2=0
x=2
但是X=2使分母等於0(無意義),所以X=2是增根.
分式方程兩邊都乘以最簡公分母化分式方程為整公分母的值不為0,則此解是分式方程的解,若最簡公分母的值為0,則此解是增根.
例如
設方程 A(x)=0 是由方程 B(x)=0 變形得來的,如果這兩個方程的根完全相同(包括重數),那麼稱這兩個方程等價.如果 x=a 是方程 A(x)=0 的根但不是B(x)=0 的根,稱 x=a 是方程的增根;如果x=b 是方程B(x)=0 的根但不是A(x)=0 的根,稱x=b 是方程B(x)=0 的失根.