極限不存在有哪幾種情況
極限不存在有三種情況:
1.極限為無窮,很好理解,明顯與極限存在定義相違。
2.左右極限不相等,例如分段函式。
3.沒有確定的函式值,例如lim(sinx)從0到無窮。
極限是微積分和數學分析的其他分支最基本的概念之一,連續和導數的概念均由其定義。它可以用來描述一個序列的指標愈來愈大時,序列中元素的性質變化的趨勢,也可以描述函式的自變數接近某一個值的時候,相對應的函式值變化的趨勢。
極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函式的一門學科。
所謂極限的思想,是指“用極限概念分析問題和解決問題的一種數學思想”。
用極限思想解決問題的一般步驟可概括為:
對於被考察的未知量,先設法正確地構思一個與它的變化有關的另外一個變數,確認此變數透過無限變化過程的’影響‘趨勢性結果就是非常精密的約等於所求的未知量;用極限原理就可以計算得到被考察的未知量的結果。
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:“數學分析是一門什麼學科?”那麼可以概括地說:“數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。
極限不存在有哪幾種情況
極限不存在有三種情況:
1.極限為無窮,很好理解,明顯與極限存在定義相違。
2.左右極限不相等,例如分段函式。
3.沒有確定的函式值,例如lim(sinx)從0到無窮。
擴充套件資料極限是微積分和數學分析的其他分支最基本的概念之一,連續和導數的概念均由其定義。它可以用來描述一個序列的指標愈來愈大時,序列中元素的性質變化的趨勢,也可以描述函式的自變數接近某一個值的時候,相對應的函式值變化的趨勢。
極限的思想是近代數學的一種重要思想,數學分析就是以極限概念為基礎、極限理論(包括級數)為主要工具來研究函式的一門學科。
所謂極限的思想,是指“用極限概念分析問題和解決問題的一種數學思想”。
用極限思想解決問題的一般步驟可概括為:
對於被考察的未知量,先設法正確地構思一個與它的變化有關的另外一個變數,確認此變數透過無限變化過程的’影響‘趨勢性結果就是非常精密的約等於所求的未知量;用極限原理就可以計算得到被考察的未知量的結果。
極限思想是微積分的基本思想,是數學分析中的一系列重要概念,如函式的連續性、導數(為0得到極大值)以及定積分等等都是藉助於極限來定義的。如果要問:“數學分析是一門什麼學科?”那麼可以概括地說:“數學分析就是用極限思想來研究函式的一門學科,並且計算結果誤差小到難於想像,因此可以忽略不計。