射電望遠鏡
radio telescope
探測天體射電輻射的基本裝置。可以測量天體射電的強度、頻譜及偏振等量。通常 ,由天線 、接收機和終端裝置3部分構成。天線收集天體的射電輻射,接收機將這些訊號加工、轉化成可供記錄、顯示的形式,終端裝置把訊號記錄下來,並按特定的要求進行某些處理然後顯示出來。表徵射電望遠鏡效能的基本指標是空間解析度和靈敏度,前者反映區分兩個天球上彼此靠近的射電點源的能力,後者反映探測微弱射電源的能力。射電望遠鏡通常要求具有高空間解析度和高靈敏度。根據天線總體結構的不同,射電望遠鏡可分為連續孔徑和非連續孔徑兩大類,前者的主要代表是採用單盤拋物面天線的經典式射電望遠鏡,後者是以干涉技術為基礎的各種組合天線系統。20世紀60年代產生了兩種新型的非連續孔徑射電望遠鏡——甚長基線干涉儀和綜合孔徑射電望遠鏡,前者具有極高的空間解析度,後者能獲得清晰的射電影象 。世界上最大的可跟蹤型經典式射電望遠鏡其拋物面天線直徑長達100米 , 安裝在德國馬克斯·普朗克射電天文研究所 ;世界上最大的非連續孔徑射電望遠鏡是甚大天線陣,安裝在美國國立射電天文臺。
(歷史簡介)
1931年,在美國紐澤西州的貝爾實驗室裡,負責專門搜尋和鑑別電話干擾訊號的美華人KG·楊斯基發現:有一種每隔23小時56分04秒出現最大值的無線電干擾。經過仔細分析,他在1932年發表的文章中斷言:這是來自銀河中射電輻射。由此,楊斯基開創了用射電波研究天體的新紀元。當時他使用的是長30.5米、高3.66米的旋轉天線陣,在14.6米波長取得了30度寬的 “扇形”方向束。此後,射電望遠鏡的歷史便是不斷提高分辯率和靈敏度的歷史。
自從楊斯基宣佈接收到銀河的射電訊號後,美華人G·雷伯潛心試製射電望遠鏡,終於在1937年製造成功。這是一架在第二次世界大戰以前全世界獨一無二的拋物面型射電望遠鏡。它的拋物面天線直徑為9.45米,在1.87米波長取得了12度的 “鉛筆形”方向束,並測到了太陽以及其它一些天體發出的無線電波。因此,雷伯被稱為是拋物面型射電望遠鏡的首創者。
射電望遠鏡是觀測和研究來自天體的射電波的基本裝置,它包括:收集射電波的定向天線,放大射電訊號的高靈敏度接收機,資訊記錄,處理和顯示系統等等。射電望遠鏡的基本原理和光學反射望遠鏡相信,投射來的電磁波被一精確鏡面反射後,同相到達公共焦點。用旋轉拋物面作鏡面易於實現同相聚集。因此,射電望遠鏡的天線大多是拋物面。
射電觀測是在很寬的頻率範圍內進行,檢測和資訊處理的射電技術又較光學波希靈活多樣,所以,射電望遠鏡種類更多,分類方法多種多樣。例如按接收天線的形狀可分為拋物面、拋物柱面、球面、拋物面截帶、喇、螺旋 、行波、天線等射電望遠鏡;按方向束形狀可分為鉛筆束、扇束、多束等射電望遠鏡;按觀測目的可分為測繪、定位、定標、偏振、頻譜、日象等射電望遠鏡;按工作型別又可分為全功率、掃頻、快速成像等型別的射電望遠鏡。
射電望遠鏡
radio telescope
探測天體射電輻射的基本裝置。可以測量天體射電的強度、頻譜及偏振等量。通常 ,由天線 、接收機和終端裝置3部分構成。天線收集天體的射電輻射,接收機將這些訊號加工、轉化成可供記錄、顯示的形式,終端裝置把訊號記錄下來,並按特定的要求進行某些處理然後顯示出來。表徵射電望遠鏡效能的基本指標是空間解析度和靈敏度,前者反映區分兩個天球上彼此靠近的射電點源的能力,後者反映探測微弱射電源的能力。射電望遠鏡通常要求具有高空間解析度和高靈敏度。根據天線總體結構的不同,射電望遠鏡可分為連續孔徑和非連續孔徑兩大類,前者的主要代表是採用單盤拋物面天線的經典式射電望遠鏡,後者是以干涉技術為基礎的各種組合天線系統。20世紀60年代產生了兩種新型的非連續孔徑射電望遠鏡——甚長基線干涉儀和綜合孔徑射電望遠鏡,前者具有極高的空間解析度,後者能獲得清晰的射電影象 。世界上最大的可跟蹤型經典式射電望遠鏡其拋物面天線直徑長達100米 , 安裝在德國馬克斯·普朗克射電天文研究所 ;世界上最大的非連續孔徑射電望遠鏡是甚大天線陣,安裝在美國國立射電天文臺。
(歷史簡介)
1931年,在美國紐澤西州的貝爾實驗室裡,負責專門搜尋和鑑別電話干擾訊號的美華人KG·楊斯基發現:有一種每隔23小時56分04秒出現最大值的無線電干擾。經過仔細分析,他在1932年發表的文章中斷言:這是來自銀河中射電輻射。由此,楊斯基開創了用射電波研究天體的新紀元。當時他使用的是長30.5米、高3.66米的旋轉天線陣,在14.6米波長取得了30度寬的 “扇形”方向束。此後,射電望遠鏡的歷史便是不斷提高分辯率和靈敏度的歷史。
自從楊斯基宣佈接收到銀河的射電訊號後,美華人G·雷伯潛心試製射電望遠鏡,終於在1937年製造成功。這是一架在第二次世界大戰以前全世界獨一無二的拋物面型射電望遠鏡。它的拋物面天線直徑為9.45米,在1.87米波長取得了12度的 “鉛筆形”方向束,並測到了太陽以及其它一些天體發出的無線電波。因此,雷伯被稱為是拋物面型射電望遠鏡的首創者。
射電望遠鏡是觀測和研究來自天體的射電波的基本裝置,它包括:收集射電波的定向天線,放大射電訊號的高靈敏度接收機,資訊記錄,處理和顯示系統等等。射電望遠鏡的基本原理和光學反射望遠鏡相信,投射來的電磁波被一精確鏡面反射後,同相到達公共焦點。用旋轉拋物面作鏡面易於實現同相聚集。因此,射電望遠鏡的天線大多是拋物面。
射電觀測是在很寬的頻率範圍內進行,檢測和資訊處理的射電技術又較光學波希靈活多樣,所以,射電望遠鏡種類更多,分類方法多種多樣。例如按接收天線的形狀可分為拋物面、拋物柱面、球面、拋物面截帶、喇、螺旋 、行波、天線等射電望遠鏡;按方向束形狀可分為鉛筆束、扇束、多束等射電望遠鏡;按觀測目的可分為測繪、定位、定標、偏振、頻譜、日象等射電望遠鏡;按工作型別又可分為全功率、掃頻、快速成像等型別的射電望遠鏡。