線性規劃問題的形式特徵,三個要素組成:
1、變數或決策變數;
2、目標函式;
3、約束條件。
求解線性規劃問題的基本方法是單純形法,已有單純形法的標準軟體,可在電子計算機上求解約束條件和決策變數數達 10000個以上的線性規劃問題。
為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解演算法和各種多項式時間演算法。對於只有兩個變數的簡單的線性規劃問題,也可採用圖解法求解。
這種方法僅適用於只有兩個變數的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。透過圖解法求解可以理解線性規劃的一些基本概念。
擴充套件資料:
線性規劃建立的數學模型具有以下特點:
1、每個模型都有若干個決策變數(x1,x2,x3……,xn),其中n為決策變數個數。決策變數的一組值表示一種方案,同時決策變數一般是非負的。
2、目標函式是決策變數的線性函式,根據具體問題可以是最大化(max)或最小化(min),二者統稱為最最佳化(opt)。
3、約束條件也是決策變數的線性函式。
當我們得到的數學模型的目標函式為線性函式,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。
線性規劃問題的形式特徵,三個要素組成:
1、變數或決策變數;
2、目標函式;
3、約束條件。
求解線性規劃問題的基本方法是單純形法,已有單純形法的標準軟體,可在電子計算機上求解約束條件和決策變數數達 10000個以上的線性規劃問題。
為了提高解題速度,又有改進單純形法、對偶單純形法、原始對偶方法、分解演算法和各種多項式時間演算法。對於只有兩個變數的簡單的線性規劃問題,也可採用圖解法求解。
這種方法僅適用於只有兩個變數的線性規劃問題。它的特點是直觀而易於理解,但實用價值不大。透過圖解法求解可以理解線性規劃的一些基本概念。
擴充套件資料:
線性規劃建立的數學模型具有以下特點:
1、每個模型都有若干個決策變數(x1,x2,x3……,xn),其中n為決策變數個數。決策變數的一組值表示一種方案,同時決策變數一般是非負的。
2、目標函式是決策變數的線性函式,根據具體問題可以是最大化(max)或最小化(min),二者統稱為最最佳化(opt)。
3、約束條件也是決策變數的線性函式。
當我們得到的數學模型的目標函式為線性函式,約束條件為線性等式或不等式時稱此數學模型為線性規劃模型。