回覆列表
  • 1 # 使用者3417633067606

    ∫sectdt=ln|sect+tant|+C

    解:被積函式的定義域為t≠kπ+π/2

    ∫sectdt

    =∫dt/cost

    =∫costdt/cos瞭

    令u=sint,則du=costdt

    ∴原式=∫du/(1-u?

    =∫du/(1-u)(1+u)

    設1/(1-u)(1+u)=A/(1-u)+B/(1+u),對等式右邊通分得[A(1+u)+B(1-u)]/(1-u)(1+u)

    ∴1=A+Au+B-Bu=u(A-B)+(A+B)

    ∴A-B=0,A+B=1,解得A=B=1/2

    ∴原式=∫[1/2(1-u)+1/2(1+u)]du

    =1/2*∫[1/(1-u)+1/(1+u)]du

    =1/2*[-∫du/(u-1)+∫du/(u+1)]

    =1/2*(-ln|u-1|+ln|u+1|)+C

    =1/2*ln|(u+1)/(u-1)|+C

    =1/2*ln|(u+1)?(u?1)|+C

    =1/2*ln|(1+sint)?(-cos瞭)|+C

    =1/2*2ln|(1+sint)/cost|+C

    =ln|1/cost+sint/cost|+C

    =ln|sect+tant|+C

  • 中秋節和大豐收的關聯?
  • 怎麼這麼倒黴啊,有什麼辦法能搞笑開心快樂一點麼?