細胞衰老的原因目前還未確定,但是存在這幾種原因。
分子機理之差錯學派
細胞衰老是各種細胞成分在受到內外環境的損傷作用後,因缺乏完善的修復,使“差錯”積累,導致細胞衰老。根據對導致“差錯”的主要因子和主導因子的認識不同,可分為不同的學說,這些學說各有實驗證據。
代謝廢物積累學說
細胞代謝產物積累至一定量後會危害細胞,引起衰老,哺乳動物脂褐質的沉積是一個典型的例子,脂褐質是一些長壽命的蛋白質和DNA、脂類共價縮合形成的巨交聯物,次級溶酶體是形成脂褐質的場所,由於脂褐質結構緻密,不能被徹底水解,又不能排出細胞,結果在細胞內沉積增多,阻礙細胞的物質交流和訊號傳遞。最後導致細胞衰老。研究還發現老年性痴呆(AD)腦內的脂褐質、腦血管沉積物中有β-澱粉樣蛋白,因此β-AP可做為AD的鑑定指標。
大分子交聯學說
過量的大分子交聯是衰老的一個主要因素,如DNA交聯和膠原膠聯均可損害其功能,引起衰老。在臨床方面膠原交聯和動脈硬化、微血管病變有密切關係。
自由基學說
自由基是一類瞬時形成的含不成對電子的原子或功能基團,普遍存在於生物系統。其種類多、數量大,是活性極高的過渡態中間產物。如O2ˉ··、OH·和各類活性氧中間產物(reactive oxygen metabolite ROM),正常細胞記憶體在清除自由基的防禦系統,包括酶系統和非酶系統。前者如:超氧化物歧化酶(SOD),過氧化氫酶(CAT),谷胱甘肽過氧化物酶(GSH-PX),非酶系統有維生素E,醌類物質等電子受體。 自由基的化學性質活潑,可攻擊生物體內的DNA、蛋白質和脂類等大分子物質,造成損傷,如DNA的斷裂、交聯、鹼基羥基化。蛋白質的變性而失活,膜脂中不飽和脂肪酸的氧化而流動性降低。實驗表明DNA中OH8dG隨著年齡的增加而增加。OH8dG完全失去鹼基配對特異性,不僅OH8dG被錯讀,與之相鄰的胞嘧啶也被錯誤複製。 大量實驗證明實,超氧化物岐化酶與抗氧化酶的活性升高能延緩機體的衰老。Sohal等人(1994、1995),將超氧化物岐化酶與過氧化氫酶基因匯入果蠅,使轉基因株比野生型這兩種酶基因多一個複製,結果轉基因株中酶活性顯著升高,平均年齡和最高壽限有所延長。
體細胞突變學說
認為誘發和自發突變積累和功能基因的喪失,減少了功能性蛋白的合成,導致細胞的衰老和死亡。如輻射可以導致年輕的哺乳動物出現衰老的症狀,和個體正常衰老非常相似。
DNA損傷修復學說
外源的理化因子,內源的自由基本均可導致DNA的損傷。正常機體記憶體在DNA的修復機制,可使損傷的DNA得到修復,但是隨著年齡的增加,這種修復能力下降,導致DNA的錯誤累積,最終細胞衰老死亡。DNA的修復並不均一,轉錄活躍基因被優先修復,而在同一基因中轉錄區被優先修復,而徹底的修復僅發生在細胞分裂的DNA複製時期,這就是幹細胞能永保青春的原因。
端粒學說
染色體兩端有端粒,細胞分裂次數多,端粒向內延伸,正常DNA受損。
生物分子自然交聯學說
該學說在論證生物體衰老的分子機制時指出:生物體是一個不穩定的化學體系,屬於耗散結構。體系中各種生物分子具有大量的活潑基團,它們必然相互作用發生化學反應使生物分子緩慢交聯以趨向化學活性的穩定。隨著時間的推移,交聯程度不斷增加,生物分子的活潑基團不斷消耗減少,原有的分子結構逐漸改變,這些變化的積累會使生物組織逐漸出現衰老現象。生物分子或基因的這些變化一方面會表現出不同活性甚至作用徹底改變的基因產物,另一方面還會干擾RNA聚合酶的識別結合,從而影響轉錄活性,表現出基因的轉錄活性有次序地逐漸喪失,促使細胞、組織發生進行性和規律性的表型變化乃至衰老死亡。 生物分子自然交聯說論證生物衰老的分子機制的基本論點可歸納如下:其一,各種生物分子不是一成不變的,而是隨著時間推移按一定自然模式發生進行性自然交聯。其二,進行性自然交聯使生物分子緩慢聯結,分子間鍵能不斷增加,逐漸高分子化,溶解度和膨潤能力逐漸降低和喪失,其表型特徵是細胞和組織出現老態。其三,進行性自然交聯導致基因的有序失活,使細胞按特定模式生長分化,使生物體表現出程式化和模式化生長、發育、衰老以至死亡的動態變化歷程。
分子機理之遺傳論學派
認為衰老是遺傳決定的自然演進過程,一切細胞均有內在的預定程式決定其壽命,而細胞壽命又決定種屬壽命的差異,而外部因素只能使細胞壽命在限定範圍內變動。
細胞有限分裂學說
L.Hayflick (1961)報道,人的纖維細胞在體外培養時增殖次數是有限的。後來許多實驗證明,正常的動物細胞無論是在體內生長還是在體外培養,其分裂次數總存在一個“極極值”。此值被稱為“Hayflick”極限,亦稱最大分裂次數。如人胚成纖維細胞在體外培養時只能增殖60~70代。 現在普遍認為細胞增殖次數與端粒DNA長度有關。 Harley等1991發現體細胞染色體的端粒DNA會隨細胞分裂次數增加而不斷縮短。DNA複製一次端粒就縮短一段,當縮短到一定程度至Hayflick點時,細胞停止複製,而走向衰亡。資料表明人的成纖維細胞端粒每年縮短14~18bp,可見染色體的端粒有細胞分裂計數器的功能,能記憶細胞分裂的次數。 端粒的長度還與端聚酶的活性有關,端聚酶是一種反轉錄酶,能以自身的RNA為模板合成端粒DNA,在精原細胞和腫瘤細胞(如Hela細胞)中有較高的端聚酶活性,而正常體細胞中端聚酶的活性很低,呈抑制狀態。
重複基因失活學說
真核生物基因組DNA重複序列不僅增加基因資訊量,而且也是使基因資訊免遭機遇性分子損害的一種方式。主要基因的選擇性重複是基因組的保護性機制,也可能是決定細胞衰老速度的一個因素,重複基因的一個複製受損或選擇關閉後,其它複製被啟用,直到最後一份複製用完,細胞因缺少某種重要產物而衰亡。實驗證明小鼠肝細胞重複基因的轉錄靈敏度隨年齡而逐漸降低。哺乳動物rRNA基因數隨年齡而減少。
衰老基因學說
統計學資料表明,子女的壽命與雙親的壽命有關,各種動物都有相當恆定的平均壽命和最高壽命,成人早衰症病人平均39歲時出現衰老,47歲生命結束,嬰幼兒早衰症的小孩在1歲時出現明顯的衰老,12~18歲即過早夭折。由此來看物種的壽命主要取決於遺傳物質,DNA鏈上可能存在一些“長壽基因”或“衰老基因”來決定個體的壽限。 研究表明當細胞衰老時,一些衰老相關基因(SAG)表達特別活躍,其表達水平大大高於年輕細胞,已在人1 號染色體、4號染色體及Ⅹ染色體上發現SAG。 用線蟲的研究表明,基因確可影響衰老及壽限,Caenrhabditis elegans的平均壽命僅3.5天,該蟲age-1 單基因突變,可提高平均壽命65%,提高最大壽命110%,age-1突變型有較強的抗氧化酶活性,對H2O2、農藥、紫外線和高溫的耐受性均高於野生型。 對早衰老綜合症的研究發現體內解旋酶存在突變,該酶基因位於8號染色體短臂,稱為WRN基因,對AD的研究發現,至少與4個基因的突變有關。其中澱粉樣蛋白前體基因(APP)的突變,導致基因產物β澱粉蛋白易於在腦組織中沉積,引起基因突變。
細胞衰老的原因目前還未確定,但是存在這幾種原因。
分子機理之差錯學派
細胞衰老是各種細胞成分在受到內外環境的損傷作用後,因缺乏完善的修復,使“差錯”積累,導致細胞衰老。根據對導致“差錯”的主要因子和主導因子的認識不同,可分為不同的學說,這些學說各有實驗證據。
代謝廢物積累學說
細胞代謝產物積累至一定量後會危害細胞,引起衰老,哺乳動物脂褐質的沉積是一個典型的例子,脂褐質是一些長壽命的蛋白質和DNA、脂類共價縮合形成的巨交聯物,次級溶酶體是形成脂褐質的場所,由於脂褐質結構緻密,不能被徹底水解,又不能排出細胞,結果在細胞內沉積增多,阻礙細胞的物質交流和訊號傳遞。最後導致細胞衰老。研究還發現老年性痴呆(AD)腦內的脂褐質、腦血管沉積物中有β-澱粉樣蛋白,因此β-AP可做為AD的鑑定指標。
大分子交聯學說
過量的大分子交聯是衰老的一個主要因素,如DNA交聯和膠原膠聯均可損害其功能,引起衰老。在臨床方面膠原交聯和動脈硬化、微血管病變有密切關係。
自由基學說
自由基是一類瞬時形成的含不成對電子的原子或功能基團,普遍存在於生物系統。其種類多、數量大,是活性極高的過渡態中間產物。如O2ˉ··、OH·和各類活性氧中間產物(reactive oxygen metabolite ROM),正常細胞記憶體在清除自由基的防禦系統,包括酶系統和非酶系統。前者如:超氧化物歧化酶(SOD),過氧化氫酶(CAT),谷胱甘肽過氧化物酶(GSH-PX),非酶系統有維生素E,醌類物質等電子受體。 自由基的化學性質活潑,可攻擊生物體內的DNA、蛋白質和脂類等大分子物質,造成損傷,如DNA的斷裂、交聯、鹼基羥基化。蛋白質的變性而失活,膜脂中不飽和脂肪酸的氧化而流動性降低。實驗表明DNA中OH8dG隨著年齡的增加而增加。OH8dG完全失去鹼基配對特異性,不僅OH8dG被錯讀,與之相鄰的胞嘧啶也被錯誤複製。 大量實驗證明實,超氧化物岐化酶與抗氧化酶的活性升高能延緩機體的衰老。Sohal等人(1994、1995),將超氧化物岐化酶與過氧化氫酶基因匯入果蠅,使轉基因株比野生型這兩種酶基因多一個複製,結果轉基因株中酶活性顯著升高,平均年齡和最高壽限有所延長。
體細胞突變學說
認為誘發和自發突變積累和功能基因的喪失,減少了功能性蛋白的合成,導致細胞的衰老和死亡。如輻射可以導致年輕的哺乳動物出現衰老的症狀,和個體正常衰老非常相似。
DNA損傷修復學說
外源的理化因子,內源的自由基本均可導致DNA的損傷。正常機體記憶體在DNA的修復機制,可使損傷的DNA得到修復,但是隨著年齡的增加,這種修復能力下降,導致DNA的錯誤累積,最終細胞衰老死亡。DNA的修復並不均一,轉錄活躍基因被優先修復,而在同一基因中轉錄區被優先修復,而徹底的修復僅發生在細胞分裂的DNA複製時期,這就是幹細胞能永保青春的原因。
端粒學說
染色體兩端有端粒,細胞分裂次數多,端粒向內延伸,正常DNA受損。
生物分子自然交聯學說
該學說在論證生物體衰老的分子機制時指出:生物體是一個不穩定的化學體系,屬於耗散結構。體系中各種生物分子具有大量的活潑基團,它們必然相互作用發生化學反應使生物分子緩慢交聯以趨向化學活性的穩定。隨著時間的推移,交聯程度不斷增加,生物分子的活潑基團不斷消耗減少,原有的分子結構逐漸改變,這些變化的積累會使生物組織逐漸出現衰老現象。生物分子或基因的這些變化一方面會表現出不同活性甚至作用徹底改變的基因產物,另一方面還會干擾RNA聚合酶的識別結合,從而影響轉錄活性,表現出基因的轉錄活性有次序地逐漸喪失,促使細胞、組織發生進行性和規律性的表型變化乃至衰老死亡。 生物分子自然交聯說論證生物衰老的分子機制的基本論點可歸納如下:其一,各種生物分子不是一成不變的,而是隨著時間推移按一定自然模式發生進行性自然交聯。其二,進行性自然交聯使生物分子緩慢聯結,分子間鍵能不斷增加,逐漸高分子化,溶解度和膨潤能力逐漸降低和喪失,其表型特徵是細胞和組織出現老態。其三,進行性自然交聯導致基因的有序失活,使細胞按特定模式生長分化,使生物體表現出程式化和模式化生長、發育、衰老以至死亡的動態變化歷程。
分子機理之遺傳論學派
認為衰老是遺傳決定的自然演進過程,一切細胞均有內在的預定程式決定其壽命,而細胞壽命又決定種屬壽命的差異,而外部因素只能使細胞壽命在限定範圍內變動。
細胞有限分裂學說
L.Hayflick (1961)報道,人的纖維細胞在體外培養時增殖次數是有限的。後來許多實驗證明,正常的動物細胞無論是在體內生長還是在體外培養,其分裂次數總存在一個“極極值”。此值被稱為“Hayflick”極限,亦稱最大分裂次數。如人胚成纖維細胞在體外培養時只能增殖60~70代。 現在普遍認為細胞增殖次數與端粒DNA長度有關。 Harley等1991發現體細胞染色體的端粒DNA會隨細胞分裂次數增加而不斷縮短。DNA複製一次端粒就縮短一段,當縮短到一定程度至Hayflick點時,細胞停止複製,而走向衰亡。資料表明人的成纖維細胞端粒每年縮短14~18bp,可見染色體的端粒有細胞分裂計數器的功能,能記憶細胞分裂的次數。 端粒的長度還與端聚酶的活性有關,端聚酶是一種反轉錄酶,能以自身的RNA為模板合成端粒DNA,在精原細胞和腫瘤細胞(如Hela細胞)中有較高的端聚酶活性,而正常體細胞中端聚酶的活性很低,呈抑制狀態。
重複基因失活學說
真核生物基因組DNA重複序列不僅增加基因資訊量,而且也是使基因資訊免遭機遇性分子損害的一種方式。主要基因的選擇性重複是基因組的保護性機制,也可能是決定細胞衰老速度的一個因素,重複基因的一個複製受損或選擇關閉後,其它複製被啟用,直到最後一份複製用完,細胞因缺少某種重要產物而衰亡。實驗證明小鼠肝細胞重複基因的轉錄靈敏度隨年齡而逐漸降低。哺乳動物rRNA基因數隨年齡而減少。
衰老基因學說
統計學資料表明,子女的壽命與雙親的壽命有關,各種動物都有相當恆定的平均壽命和最高壽命,成人早衰症病人平均39歲時出現衰老,47歲生命結束,嬰幼兒早衰症的小孩在1歲時出現明顯的衰老,12~18歲即過早夭折。由此來看物種的壽命主要取決於遺傳物質,DNA鏈上可能存在一些“長壽基因”或“衰老基因”來決定個體的壽限。 研究表明當細胞衰老時,一些衰老相關基因(SAG)表達特別活躍,其表達水平大大高於年輕細胞,已在人1 號染色體、4號染色體及Ⅹ染色體上發現SAG。 用線蟲的研究表明,基因確可影響衰老及壽限,Caenrhabditis elegans的平均壽命僅3.5天,該蟲age-1 單基因突變,可提高平均壽命65%,提高最大壽命110%,age-1突變型有較強的抗氧化酶活性,對H2O2、農藥、紫外線和高溫的耐受性均高於野生型。 對早衰老綜合症的研究發現體內解旋酶存在突變,該酶基因位於8號染色體短臂,稱為WRN基因,對AD的研究發現,至少與4個基因的突變有關。其中澱粉樣蛋白前體基因(APP)的突變,導致基因產物β澱粉蛋白易於在腦組織中沉積,引起基因突變。