首頁>Club>
8
回覆列表
  • 1 # 使用者3136867717565

    音障是一種物理現象,當物體(通常是航空器)的速度接近音速時,將會逐漸追上自己發出的聲波。聲波疊合累積的結果,會造成震波(Shock Wave)的產生,進而對飛行器的加速產生障礙,而這種因為音速造成提升速度的障礙稱為音障。突破音障進入超音速後,從航空器最前端起會產生一股圓錐形的音錐,在旁觀者聽來這股震波有如爆炸一般,故稱為音爆或聲爆(Sonic Boom)。強烈的音爆不僅會對地面建築物產生損害,對於飛行器本身伸出衝擊面之外部分也會產生破壞。

    除此之外,由於在物體的速度快要接近音速時,周邊的空氣受到聲波疊合而呈現非常高壓的狀態,因此一旦物體穿越音障後,周圍壓力將會陡降。在比較潮溼的天氣,有時陡降的壓力所造成的瞬間低溫可能會讓氣溫低於它的露點(Dew Point)溫度,使得水汽凝結變成微小的水珠,肉眼看來就像是雲霧般的狀態。但由於這個低壓帶會隨著空氣離機身的距離增加而恢復到常壓,因此整體看來形狀像是一個以物體為中心軸、向四周均勻擴散的圓錐狀雲團。

    們在實踐中發現,在飛行速度達到音速的十分之九,即馬赫數MO.9空中時速約950公里時,區域性氣流的速度可能就達到音速,產生區域性激波,從而使氣動阻力劇增。要進一步提高速度,就需要發動機有更大的推力。更嚴重的是,激波能使流經機翼和機身表面的氣流,變得非常紊亂,從而使飛機劇烈抖動,操縱十分困難。同時,機翼會下沉、機頭往下栽;如果這時飛機正在爬升,機身會突然自動上仰。這些討厭的症狀,都可能導致飛機墜毀。這就是所謂“音障”問題。由於聲波的傳遞速度是有限的,移動中的聲源便可追上自己發出的聲波。當物體速度增加到與音速相同時,聲波開始在物體前面堆積。如果這個物體有足夠的加速度,便能突破這個不穩定的聲波屏障,衝到聲音的前面去,也就是衝破音障。

    一個以超音速前進的物體,會持續在其前方產生穩定的壓力波(弓形震波)。當物體朝觀察者前進時,觀察者不會聽到聲音;物體通過後,所產生的波(馬赫波)朝向地面傳來,波間的壓力差會形成可聽見的效應,也就是音爆.

    當飛機的飛行速度比音速低時,同飛機接觸的空氣好像“通訊員”似的,以傳遞聲音的速度向前“通知”前面即將遭遇飛機的空氣,使它們“讓路”。但當飛機的速度超過音速時,飛機前面的空氣因來不及躲避而被緊密地壓縮在一起,堆聚成一層薄薄的波面——激波,激波後面,空氣因被壓縮,使壓強突然升高,阻止了飛機的進一步加速,並可能使機翼和尾翼劇烈振顫而發生爆炸。

    而音障不單單僅有聲波,還有來自空氣的阻力,當飛行物體要接近1馬赫(聲速單位)飛行時,前方急速衝來的空氣不能夠像平常一樣透過機身擴散開,於是氣體都堆積到了飛行體的周圍,產生極大的壓力,也會引發出一種看不見的空氣旋渦,俗稱“死亡漩渦”這也被叫做音障,如果機身不作特殊加固處理,那麼將會被瞬間搖成碎片。

    美國對超音速飛機的研究,主要集中在貝爾X-1型“空中火箭”式超音速火箭動力研究機上。研製X-l最初的意圖,是想製造出一架飛行速度略微超過音速的飛機。X-l飛機的翼型很薄,沒有後掠角。它採用液體火箭發動機做動力。由於飛機上所能攜帶的火箭燃料數量有限,火箭發動機工作的時間很短,因此不能用X-1自己的動力從跑道上起飛,而需要把它掛在一架B-29型“超級堡壘”重型轟炸機的機身下,升入天空。

    飛行員在升空之前.已經在X-l的座艙內坐好。轟炸機飛到高空後,象投炸彈那樣,把X-l投放開去。X-l離開轟炸機後,在滑翔飛行中,再開動自己的火箭發動機加速飛行。X-1進行第一次空中投放試驗,是在1946年1月19日;而首次在空中開動其火箭動力試飛,則要等到當年12月9日才進行,使用的是X-l的2號原型機。

    又過了大約一年,X-l的首次超音速飛行才獲得成功。完成人類航空史上這項創舉的,是美國空軍的試飛員查爾斯·耶格爾上尉。他是在1947年10月14日完成的。24歲的查克·耶格爾從此成為世界上第一個飛得比聲音更快的人,使他的名字載入航空史冊。那是一次很艱難的飛行。耶格爾駕駛X-l在12800米的高空,使飛行速度達到1078公里/小時,相當於M1.015。

    在人類首次突破“音障”之後,研製超音速飛機的進展就加快了。美國空軍和海軍在競創速度記錄方面展開了競爭。1951年8月7日,美國海軍的道格拉斯 D.558-II型“空中火箭”式研究機的速度,達到M1.88。有趣的是,X-l型和D.558-II型,都被稱為“空中火箭”。 D.558-II也是以火箭發動機為動力,由試飛員威廉·布里奇曼駕駛。8天之後,布里奇曼駕駛這架研究機,飛達22721米的高度,使他成為當時不但飛得最快,而且飛得最高的人。接著,在1953年,“空中火箭”的飛行速度,又超過了M2.0,約合2172公里/小時。

    人們透過理論研究和一系列研究機的飛行實踐,包括付出了血的代價,終於掌握了超音速飛行的規律。高速飛行研究的成果,首先被用於軍事上,各國競相研製超音速戰鬥機。1954年,前蘇聯的米格-19和美國的F-100“超佩刀”問世,這是兩架最先服役的僅依靠本身噴氣發動機即可在平飛中超過音速的戰鬥機;很快,1958年F-104和米格-21又將這一記錄提高到了M2.0。儘管這些資料都是在飛機高空中加力全開的短時間才能達到,但人們對追求這一瞬間的輝煌還是樂此不疲。將“高空高速”這一情結髮揮到極致的是兩種“雙三”飛機,米格-25和SR-71,它們的升限高達30000米,最大速度則達到了驚人的M3.0,已經接近了噴氣式發動機的極限。隨著近年來實戰得到的經驗,“高空高速”並不適用,這股熱潮才逐漸冷卻。

    超音速飛機的機體結構,同亞音速飛機相當不同:機翼必須薄得多;關鍵因素是寬高比,即機翼厚度與翼弦的比率。以亞音速的活塞式飛機來說,轟炸機的寬高比為17%,殲擊機是14%;但對超音速飛機來說,厚弦比就很難超過5%,即機翼厚度只有翼弦的二十分之一或更小,機翼的最大厚度可能只有十幾個釐米。超音速飛機的翼展(即機翼兩端的使離)不能太大,而是趨向於較寬較短,翼弦增大。設計師們想出的辦法之一,是將機翼做成三角形,前緣的後掠角較大,翼根很長,從機頭到機尾同機身相接(如Phantom-2000)。另一個辦法,把超音速機翼做得又薄又短,可以不用後掠角(如F-104)。

    由上可以知道,根據一架飛機的外形,我們就基本上可以判斷出它是超音速還是亞音速的飛機了。

    飛行器在速度達到音速左右時,會有一股強大的阻力,使飛行器產生強烈的振盪,速度衰減。這一現象被俗稱為音障。當飛行器突破這一障礙後,整個世界都安靜了,一切聲音全被拋在了身後!那個白的東西,就是在突破音障的一瞬間,由於空氣氣流的不均衡攪動產生的,一般情況下是看不到的,所以才珍貴。

    現代飛機結構牢固 音障已經不是障礙了

    (*^__^*) 嘻嘻……

  • 中秋節和大豐收的關聯?
  • 垃圾分類的研究目的和意義是什麼?