學好數學是能力的培養:
一、數學運算
運算是學好數學的基本功.初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程.初中運算能力不過關,會直接影響高中數學的學習.在面對複雜運算的時候,常常要注意以下兩點:①情緒穩定,算理明確,過程合理,速度均勻,結果準確;②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚.
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提.理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的.所以理解是個體對外部或內部資訊進行主動的再加工過程,是一種創造性的“勞動”.理解的標準是“準確”、“簡單”和“全面”.“準確”就是要抓住事物的本質;“簡單”就是深入淺出、言簡意賅;“全面”則是“既見樹木,又見森林”,不重不漏.對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法.
記憶是個體對其經驗的識記、保持和再現,是資訊的輸入、編碼、儲存和提取.藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到“拋物線”三個字,你就會想到:拋物線的定義是什麼?標準方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查詢、對照,這樣印象就會更加深刻.另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函式一章中,所有的公式都是以三角函式定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘.
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路.保證數量就是①選準一本與教材同步的輔導書或練習冊.②做完一節的全部練習後,對照答案進行批改.千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、洩氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:“先做後看”與“先看後測”.③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上.④每天保證1小時左右的練習時間.
保證質量就是①題不在多,而在於精,學會“解剖麻雀”.充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯絡,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一.②落實:不僅要落實思維過程,而且要落實解答過程.③複習:“溫故而知新”,把一些比較“經典”的題重做幾遍,把做錯的題當作一面“鏡子”進行自我反思,也是一種高效率的、針對性較強的學習方法.
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求.比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有“山重水複疑無路,柳暗花明又一村”的感覺.比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理.應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法.
只要我們重視運算能力的培養,紮紮實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,就一定能把數學學好.
學好數學是能力的培養:
一、數學運算
運算是學好數學的基本功.初中階段是培養數學運算能力的黃金時期,初中代數的主要內容都和運算有關,如有理數的運算、整式的運算、因式分解、分式的運算、根式的運算和解方程.初中運算能力不過關,會直接影響高中數學的學習.在面對複雜運算的時候,常常要注意以下兩點:①情緒穩定,算理明確,過程合理,速度均勻,結果準確;②要自信,爭取一次做對;慢一點,想清楚再寫;少心算,少跳步,草稿紙上也要寫清楚.
二、數學基礎知識
理解和記憶數學基礎知識是學好數學的前提.理解就是用自己的話去解釋事物的意義,同一個數學概念,在不同學生的頭腦中存在的形態是不一樣的.所以理解是個體對外部或內部資訊進行主動的再加工過程,是一種創造性的“勞動”.理解的標準是“準確”、“簡單”和“全面”.“準確”就是要抓住事物的本質;“簡單”就是深入淺出、言簡意賅;“全面”則是“既見樹木,又見森林”,不重不漏.對數學基礎知識的理解可以分為兩個層面:一是知識的形成過程和表述;二是知識的引申及其蘊涵的數學思想方法和數學思維方法.
記憶是個體對其經驗的識記、保持和再現,是資訊的輸入、編碼、儲存和提取.藉助關鍵詞或提示語嘗試回憶的方法是一種比較有效的記憶方法,比如,看到“拋物線”三個字,你就會想到:拋物線的定義是什麼?標準方程是什麼?拋物線有幾個方面的性質?關於拋物線有哪些典型的數學問題?不妨先寫下所想到的內容,再去查詢、對照,這樣印象就會更加深刻.另外,在數學學習中,要把記憶和推理緊密結合起來,比如在三角函式一章中,所有的公式都是以三角函式定義和加法定理為基礎的,如果能在記憶公式的同時,掌握推導公式的方法,就能有效地防止遺忘.
三、數學解題
學數學沒有捷徑可走,保證做題的數量和質量是學好數學的必由之路.保證數量就是①選準一本與教材同步的輔導書或練習冊.②做完一節的全部練習後,對照答案進行批改.千萬別做一道對一道的答案,因為這樣會造成思維中斷和對答案的依賴心理;先易後難,遇到不會的題一定要先跳過去,以平穩的速度過一遍所有題目,先徹底解決會做的題;不會的題過多時,千萬別急躁、洩氣,其實你認為困難的題,對其他人來講也是如此,只不過需要點時間和耐心;對於例題,有兩種處理方式:“先做後看”與“先看後測”.③選擇有思考價值的題,與同學、老師交流,並把心得記在自習本上.④每天保證1小時左右的練習時間.
保證質量就是①題不在多,而在於精,學會“解剖麻雀”.充分理解題意,注意對整個問題的轉譯,深化對題中某個條件的認識;看看與哪些數學基礎知識相聯絡,有沒有出現一些新的功能或用途?再現思維活動經過,分析想法的產生及錯因的由來,要求用口語化的語言真實地敘述自己的做題經過和感想,想到什麼就寫什麼,以便挖掘出一般的數學思想方法和數學思維方法;一題多解,一題多變,多元歸一.②落實:不僅要落實思維過程,而且要落實解答過程.③複習:“溫故而知新”,把一些比較“經典”的題重做幾遍,把做錯的題當作一面“鏡子”進行自我反思,也是一種高效率的、針對性較強的學習方法.
四、數學思維
數學思維與哲學思想的融合是學好數學的高層次要求.比如,數學思維方法都不是單獨存在的,都有其對立面,並且兩者能夠在解決問題的過程中相互轉換、相互補充,如直覺與邏輯,發散與定向、宏觀與微觀、順向與逆向等等,如果我們能夠在一種方法受阻的情況下自覺地轉向與其對立的另一種方法,或許就會有“山重水複疑無路,柳暗花明又一村”的感覺.比如,在一些數列問題中,求通項公式和前n項和公式的方法,除了演繹推理外,還可用歸納推理.應該說,領悟數學思維中的哲學思想和在哲學思想的指導下進行數學思維,是提高學生數學素養、培養學生數學能力的重要方法.
只要我們重視運算能力的培養,紮紮實實地掌握數學基礎知識,學會聰明地做題,並且能夠站到哲學的高度去反思自己的數學思維活動,就一定能把數學學好.