回覆列表
  • 1 # dadazhu1

    f(x)=sinx+∫(0->x) (t-x).f(t)dt

    x=0, => f(0) =0

    f(x)

    =sinx+∫(0->x) (t-x).f(t)dt

    =sinx+∫(0->x) tf(t)dt -x∫(0->x) f(t)dt

    f"(x)

    =cosx + xf(x) -xf(x) -∫(0->x) f(t)dt

    =cosx -∫(0->x) f(t)dt

    x=0, => f"(0) = 1

    f""(x)

    =-sinx -f(x)

    f""(x)+f(x) = -sinx

    The aux.equation

    p^2 +1=0

    p=i or -i

    let

    yg= Acosx +Bsinx

    yp=x(Ccosx +Dsinx)

    yp" = x(-Csinx +Dcosx) +(Ccosx +Dsinx)

    yp""

    = x(-Ccosx -Dsinx) +(-Csinx +Dcosx)+ (-Csinx +Dcosx)

    = x(-Ccosx -Dsinx) +2(-Csinx +Dcosx)

    yp""+yp = -sinx

    x(-Ccosx -Dsinx) +2(-Csinx +Dcosx) +x(Ccosx +Dsinx) =-sinx

    2(-Csinx +Dcosx) =-sinx

    -2C =-1 and 2D=0

    C=1/2 and D=0

    通解

    f(x) = yg+yp=Acosx +Bsinx + (1/2)xsinx

    f(0) =0, => A=0

    f"(x) =Bcosx + (1/2)sinx +(1/2)x.cosx

    f"(0) = 1, =>B=1

    ie

    f(x) =sinx + (1/2)xsinx

  • 中秋節和大豐收的關聯?
  • 你的初戀有多好?