f(x)=sinx+∫(0->x) (t-x).f(t)dt
x=0, => f(0) =0
f(x)
=sinx+∫(0->x) (t-x).f(t)dt
=sinx+∫(0->x) tf(t)dt -x∫(0->x) f(t)dt
f"(x)
=cosx + xf(x) -xf(x) -∫(0->x) f(t)dt
=cosx -∫(0->x) f(t)dt
x=0, => f"(0) = 1
f""(x)
=-sinx -f(x)
f""(x)+f(x) = -sinx
The aux.equation
p^2 +1=0
p=i or -i
let
yg= Acosx +Bsinx
yp=x(Ccosx +Dsinx)
yp" = x(-Csinx +Dcosx) +(Ccosx +Dsinx)
yp""
= x(-Ccosx -Dsinx) +(-Csinx +Dcosx)+ (-Csinx +Dcosx)
= x(-Ccosx -Dsinx) +2(-Csinx +Dcosx)
yp""+yp = -sinx
x(-Ccosx -Dsinx) +2(-Csinx +Dcosx) +x(Ccosx +Dsinx) =-sinx
2(-Csinx +Dcosx) =-sinx
-2C =-1 and 2D=0
C=1/2 and D=0
通解
f(x) = yg+yp=Acosx +Bsinx + (1/2)xsinx
f(0) =0, => A=0
f"(x) =Bcosx + (1/2)sinx +(1/2)x.cosx
f"(0) = 1, =>B=1
ie
f(x) =sinx + (1/2)xsinx
f(x)=sinx+∫(0->x) (t-x).f(t)dt
x=0, => f(0) =0
f(x)
=sinx+∫(0->x) (t-x).f(t)dt
=sinx+∫(0->x) tf(t)dt -x∫(0->x) f(t)dt
f"(x)
=cosx + xf(x) -xf(x) -∫(0->x) f(t)dt
=cosx -∫(0->x) f(t)dt
x=0, => f"(0) = 1
f""(x)
=-sinx -f(x)
f""(x)+f(x) = -sinx
The aux.equation
p^2 +1=0
p=i or -i
let
yg= Acosx +Bsinx
yp=x(Ccosx +Dsinx)
yp" = x(-Csinx +Dcosx) +(Ccosx +Dsinx)
yp""
= x(-Ccosx -Dsinx) +(-Csinx +Dcosx)+ (-Csinx +Dcosx)
= x(-Ccosx -Dsinx) +2(-Csinx +Dcosx)
yp""+yp = -sinx
x(-Ccosx -Dsinx) +2(-Csinx +Dcosx) +x(Ccosx +Dsinx) =-sinx
2(-Csinx +Dcosx) =-sinx
-2C =-1 and 2D=0
C=1/2 and D=0
通解
f(x) = yg+yp=Acosx +Bsinx + (1/2)xsinx
f(0) =0, => A=0
f"(x) =Bcosx + (1/2)sinx +(1/2)x.cosx
f"(0) = 1, =>B=1
ie
f(x) =sinx + (1/2)xsinx