回覆列表
  • 1 # 清風涼水

    結果為:e^x先求函式f(x)=a^x(a>0,a≠1)的導數f"(x)=lim[f(x+h)-f(x)]/h(h→0)=lim[a^(x+h)-a^x]/h(h→0)=a^x lim(a^h-1)/h(h→0)對lim(a^h-1)/h(h→0)求極限,得lna∴f"(x)=a^xlna即(a^x)"=a^xlna當a=e時∵ln e=1∴(e^x)"=e^x

    擴充套件資料

    求導數的方法:如果函式y=f(x)在開區間內每一點都可導,就稱函式f(x)在區間內可導。這時函式y=f(x)對於區間內的每一個確定的x值,都對應著一個確定的導數值,這就構成一個新的函式,稱這個函式為原來函式y=f(x)的導函式,記作y"、f"(x)、dy/dx或df(x)/dx,簡稱導數。函式y=f(x)在x0點的導數f"(x0)的幾何意義:表示函式曲線在點P0(x0,f(x0))處的切線的斜率(導數的幾何意義是該函式曲線在這一點上的切線斜率)。設函式y=f(x)在點x0的某個鄰域內有定義,當自變數x在x0處有增量Δx,(x0+Δx)也在該鄰域內時,相應地函式取得增量Δy=f(x0+Δx)-f(x0);如果Δy與Δx之比當Δx→0時極限存在,則稱函式y=f(x)在點x0處可導。對於可導的函式f(x),x↦f"(x)也是一個函式,稱作f(x)的導函式(簡稱導數)。尋找已知的函式在某點的導數或其導函式的過程稱為求導。

  • 中秋節和大豐收的關聯?
  • 帕金森病影響壽命嗎?