腳踏車只有2個輪子,卻為什麼可以保持平衡呢?甚至,高手在騎車的時候,可以雙手離開車把,任由車子向前走而不擔心摔倒(但要擔心前面呼嘯而來的汽車)。物理學家拿出一個陀螺,放在地上轉一下,並開始用鞭子使勁抽打它,隨著陀螺越轉越快,陀螺也像不倒翁一樣,雖然只有一個尖著地,卻左右搖擺而不肯倒下。這就是陀螺效應:旋轉的物體有保持其旋轉方向(旋轉軸的方向)的慣性。 陀螺只有一個旋轉方向,已經很穩定了。而腳踏車有2個輪子,顯然腳踏車輪子在高速旋轉的時候,會使腳踏車更穩定。因此,騎車人撒開車把也不會倒下。 但遺憾的是,這並非一個合理的解釋。 陀螺效應在保持腳踏車穩定中也許起到不可忽略的效果,但是,如果腳踏車單單憑藉陀螺效應保持穩定,那麼,初學者也應該在高速騎車時不會倒下。但是,2個陀螺似乎並不足以支撐騎車人重達幾十公斤的身體的傾斜。剛學習騎車往往會摔得很慘。從另一個方面看,騎獨輪車的雜技演員由於車速很低,甚至車輪完全停止轉動,則基本無法依靠陀螺效應保持平衡。 腳踏車的平衡首先來自於騎車人腰部的肌肉。熟練的騎車人,其身體形成自動的條件反射,當腳踏車稍微傾斜倒下時,人的身體會感受到,腰部肌肉會自動動作,把身體拉向另一側,形成的反向力矩促使車身抬起。我們學習騎腳踏車,也就是訓練身體的肌肉完成這種條件反射,而一旦學會,這個控制迴路就保持在小腦中,隨時可以啟用,許多年也不會忘記。 但是高速騎車時,會感覺車子比剛剛起步的時候穩定,這又是為什麼呢? 腳踏車本身的平衡機制,來自於前叉後傾。我們可以觀察到,幾乎每輛腳踏車的車把軸,都不是與地面完全垂直,而是後傾的。由於前輪是固定在車把的前叉上,因此又叫前叉後傾。前叉後傾,使車輛轉彎時產生的離心力其所形成的力矩方向,與車輪偏轉方向相反,迫使車輪偏轉後自動恢復到原來的中間位置上。這樣,車子就有了自動回正的穩定性。車速越快,所造成的恢復力矩越大,騎車人就越感到穩定。這就是高速騎車時,會感覺車子比剛剛起步的時候穩定的原因。 一般而言,車子前叉越後傾,車子越穩定,但轉動車把越費勁;而後傾角度小,轉把較容易,但車子的穩定性不夠。但如果腳踏車完全沒有前叉後傾,那麼,騎腳踏車會是一件很痛苦的事情。 腳踏車其實是相當複雜的力學體系,而汽車的前輪定位更加複雜。有主銷內傾、主銷後傾、前輪外傾和前輪前束,這保證開車的時候車子儘可能穩定,但又減少輪胎的磨損。
腳踏車只有2個輪子,卻為什麼可以保持平衡呢?甚至,高手在騎車的時候,可以雙手離開車把,任由車子向前走而不擔心摔倒(但要擔心前面呼嘯而來的汽車)。物理學家拿出一個陀螺,放在地上轉一下,並開始用鞭子使勁抽打它,隨著陀螺越轉越快,陀螺也像不倒翁一樣,雖然只有一個尖著地,卻左右搖擺而不肯倒下。這就是陀螺效應:旋轉的物體有保持其旋轉方向(旋轉軸的方向)的慣性。 陀螺只有一個旋轉方向,已經很穩定了。而腳踏車有2個輪子,顯然腳踏車輪子在高速旋轉的時候,會使腳踏車更穩定。因此,騎車人撒開車把也不會倒下。 但遺憾的是,這並非一個合理的解釋。 陀螺效應在保持腳踏車穩定中也許起到不可忽略的效果,但是,如果腳踏車單單憑藉陀螺效應保持穩定,那麼,初學者也應該在高速騎車時不會倒下。但是,2個陀螺似乎並不足以支撐騎車人重達幾十公斤的身體的傾斜。剛學習騎車往往會摔得很慘。從另一個方面看,騎獨輪車的雜技演員由於車速很低,甚至車輪完全停止轉動,則基本無法依靠陀螺效應保持平衡。 腳踏車的平衡首先來自於騎車人腰部的肌肉。熟練的騎車人,其身體形成自動的條件反射,當腳踏車稍微傾斜倒下時,人的身體會感受到,腰部肌肉會自動動作,把身體拉向另一側,形成的反向力矩促使車身抬起。我們學習騎腳踏車,也就是訓練身體的肌肉完成這種條件反射,而一旦學會,這個控制迴路就保持在小腦中,隨時可以啟用,許多年也不會忘記。 但是高速騎車時,會感覺車子比剛剛起步的時候穩定,這又是為什麼呢? 腳踏車本身的平衡機制,來自於前叉後傾。我們可以觀察到,幾乎每輛腳踏車的車把軸,都不是與地面完全垂直,而是後傾的。由於前輪是固定在車把的前叉上,因此又叫前叉後傾。前叉後傾,使車輛轉彎時產生的離心力其所形成的力矩方向,與車輪偏轉方向相反,迫使車輪偏轉後自動恢復到原來的中間位置上。這樣,車子就有了自動回正的穩定性。車速越快,所造成的恢復力矩越大,騎車人就越感到穩定。這就是高速騎車時,會感覺車子比剛剛起步的時候穩定的原因。 一般而言,車子前叉越後傾,車子越穩定,但轉動車把越費勁;而後傾角度小,轉把較容易,但車子的穩定性不夠。但如果腳踏車完全沒有前叉後傾,那麼,騎腳踏車會是一件很痛苦的事情。 腳踏車其實是相當複雜的力學體系,而汽車的前輪定位更加複雜。有主銷內傾、主銷後傾、前輪外傾和前輪前束,這保證開車的時候車子儘可能穩定,但又減少輪胎的磨損。