動力傘翼 滑翔傘的結構與飛行原理
動力傘翼與滑翔傘翼結構與原理完全相同所以我們通稱為滑翔傘 滑翔傘的結構與飛行原理
【滑翔傘的穩定性】
所有運動的物體,對其第一位的品質要求是穩定性。滑翔傘的穩定性是指當它受到外力擾動(多半為陣風、湍流或飛行員的短暫操縱)後,能自行恢復到原先狀態(平穩直線飛行)的傾向或能力。簡而言之,一具穩定的滑翔傘在遇到陣風乾擾後能自動恢復到正常飛行狀態或它在乎穩的氣流中具有“脫手”飛行的能力。
為說明滑翔傘的穩定性,先讓我們看一下它的三個旋轉軸:橫向軸、縱向軸和垂直軸。滑翔傘繞橫向軸的轉動稱俯仰,即傘衣前緣上抬或下降,是攻角的變化;繞縱向軸的轉動稱滾轉,即一側傘衣向上或向下的運動;繞垂直軸的轉動稱偏航,它是傘衣一側向前或向後的運動,也就是滑翔傘的航向變化。
滑翔傘的俯仰穩定性和滾轉穩定性都是由擺錘作用引起的。在正常穩定飛行時,飛行員懸掛在傘衣下面(這與懸掛在細繩下面的一個重物,即單擺相似),此時氣動力R與傘系統重量W大小相等,方向相反,整個力系處於平面狀態。由於擾動(如迎面陣風的推動作用),傘衣與人體位置發生偏離,攻角加大,由於R與w不再作用在同一直線上,平衡狀態被破壞,但由於力的偏移,這時會產生一個力偶或力矩,使傘衣恢復到非原先的位置。所以,滑翔傘的俯仰穩定性就是受到干擾,傘衣攻角變化後恢復到原先攻角狀態的傾向。假如滑翔傘側面受到陣風的吹襲衝擊,一側傘衣的翼尖上抬;另一側下降,也會造成R與w的平衡被破壞,同樣會在力偶的作用下產生一個恢復力矩,使傘衣繞縱向軸轉動,重新回到我們的頭項上方,這就是滑翔傘的滾轉穩定性。
滑翔的偏航和航向穩定性與上述情況不同。當滑翔傘的傘衣對風向發生偏航,傘衣的陰影面積是壓力中心後部的面積(壓力中心總是向上的氣動力R的總合的點,也可看作是重心也作用在該點上)。在偏航狀態中,傘衣在向後移動的一側,根據經驗處於較高的攻角,而向前的一側處於較低的攻角位置,所以前者比後者產生更大的力,作用在向後一側上後部的力結合透過系統質量中心的重力對傘衣產生修正作用,而使其脫離偏航狀態,回到原先的航向上。
【轉彎飛行】
滑翔傘在空中的轉彎是透過拉下操縱繩,使傘衣一側的後續部分向下彎曲,攻角加大,因而在氣流的作用下,該側阻力增大而升力被破壞。
一側傘衣隨著剎車施加而減速並輕微地下降,同時滑翔傘繞垂直軸轉動使飛行方向改變,從而實現空中轉彎。滑翔傘在轉彎時,由於人體慣性力的作用,人體向外傭偏移並使傘衣處於傾斜狀態。需要指出的是,在拉下剎車進行轉彎時,傘衣的傾斜角會隨著剎車量的增加而加大,而由人體的慣性引起的離心力也會隨剎車量和操縱速度的快慢而變化,拉動剎車越快,慣性力也越大。所以剎車操縱一定要適度和柔和,否則會導致嚴重後果。如果飛行員不斷增加剎車量,則滑翔傘的盤旋轉彎半徑會隨之越來越小,傾角變得陡峭並進入緊密的螺旋形下降,超量的剎車操縱甚至會導致進入危險的螺旋俯衝。產生這種情況的原因,是由於離心力與傘系統的總重量W相結合產生一個新的表現重力Wa。這個新的載荷大於w,也大於氣動力R,由於升力不足以平衡wa的分力,所以會導致高度損失。這種情況如發生在低空則往往會導致墜地和造成傷亡的嚴重後果,這是需要待別引起重視的。一般情況下操縱滑翔傘轉彎時,滑翔傘與水平面的傾角不應大於30度。
【滑翔傘的最佳效能】
滑翔比直接與滑翔軌跡有關。所謂滑翔比是指在單位時間內滑翔傘向前運動的水平距離與垂直下降距離的比值或水平速度與垂直下降速度的比值。這個比值的大小在一定程度上反應了滑翔傘效能的高低。初級滑翔傘的滑翔比在3:1—6:1之間;而中高階滑翔傘的滑翔比大多在5:1—9:1之間,部分競賽型高效能滑翔傘的滑翔比已接近於10:1(即水平前進10米,垂直下降1米)。滑翔傘的滑翔比也可以簡單地看作是升力L與阻力D之比。要提高滑翔傘滑翔比的途徑應該從加大升力,減小阻力著手,而決定傘衣最大滑翔比(L/D)MAX主要取決於翼型和展弦比。這裡要注意的是:柔性翼決不可一味追求氣動效能,加大展弦比,減薄翼型這將造成傘翼極容易塌陷,並恢復困難。動力滑翔傘由於有發動機,所以動力傘翼可犧牲一些空氣動力效能,換取更大的傘翼剛性及穩定性,這並不代表動力傘翼低階,而是不同
動力傘翼 滑翔傘的結構與飛行原理
動力傘翼與滑翔傘翼結構與原理完全相同所以我們通稱為滑翔傘 滑翔傘的結構與飛行原理
【滑翔傘的穩定性】
所有運動的物體,對其第一位的品質要求是穩定性。滑翔傘的穩定性是指當它受到外力擾動(多半為陣風、湍流或飛行員的短暫操縱)後,能自行恢復到原先狀態(平穩直線飛行)的傾向或能力。簡而言之,一具穩定的滑翔傘在遇到陣風乾擾後能自動恢復到正常飛行狀態或它在乎穩的氣流中具有“脫手”飛行的能力。
為說明滑翔傘的穩定性,先讓我們看一下它的三個旋轉軸:橫向軸、縱向軸和垂直軸。滑翔傘繞橫向軸的轉動稱俯仰,即傘衣前緣上抬或下降,是攻角的變化;繞縱向軸的轉動稱滾轉,即一側傘衣向上或向下的運動;繞垂直軸的轉動稱偏航,它是傘衣一側向前或向後的運動,也就是滑翔傘的航向變化。
滑翔傘的俯仰穩定性和滾轉穩定性都是由擺錘作用引起的。在正常穩定飛行時,飛行員懸掛在傘衣下面(這與懸掛在細繩下面的一個重物,即單擺相似),此時氣動力R與傘系統重量W大小相等,方向相反,整個力系處於平面狀態。由於擾動(如迎面陣風的推動作用),傘衣與人體位置發生偏離,攻角加大,由於R與w不再作用在同一直線上,平衡狀態被破壞,但由於力的偏移,這時會產生一個力偶或力矩,使傘衣恢復到非原先的位置。所以,滑翔傘的俯仰穩定性就是受到干擾,傘衣攻角變化後恢復到原先攻角狀態的傾向。假如滑翔傘側面受到陣風的吹襲衝擊,一側傘衣的翼尖上抬;另一側下降,也會造成R與w的平衡被破壞,同樣會在力偶的作用下產生一個恢復力矩,使傘衣繞縱向軸轉動,重新回到我們的頭項上方,這就是滑翔傘的滾轉穩定性。
滑翔的偏航和航向穩定性與上述情況不同。當滑翔傘的傘衣對風向發生偏航,傘衣的陰影面積是壓力中心後部的面積(壓力中心總是向上的氣動力R的總合的點,也可看作是重心也作用在該點上)。在偏航狀態中,傘衣在向後移動的一側,根據經驗處於較高的攻角,而向前的一側處於較低的攻角位置,所以前者比後者產生更大的力,作用在向後一側上後部的力結合透過系統質量中心的重力對傘衣產生修正作用,而使其脫離偏航狀態,回到原先的航向上。
【轉彎飛行】
滑翔傘在空中的轉彎是透過拉下操縱繩,使傘衣一側的後續部分向下彎曲,攻角加大,因而在氣流的作用下,該側阻力增大而升力被破壞。
一側傘衣隨著剎車施加而減速並輕微地下降,同時滑翔傘繞垂直軸轉動使飛行方向改變,從而實現空中轉彎。滑翔傘在轉彎時,由於人體慣性力的作用,人體向外傭偏移並使傘衣處於傾斜狀態。需要指出的是,在拉下剎車進行轉彎時,傘衣的傾斜角會隨著剎車量的增加而加大,而由人體的慣性引起的離心力也會隨剎車量和操縱速度的快慢而變化,拉動剎車越快,慣性力也越大。所以剎車操縱一定要適度和柔和,否則會導致嚴重後果。如果飛行員不斷增加剎車量,則滑翔傘的盤旋轉彎半徑會隨之越來越小,傾角變得陡峭並進入緊密的螺旋形下降,超量的剎車操縱甚至會導致進入危險的螺旋俯衝。產生這種情況的原因,是由於離心力與傘系統的總重量W相結合產生一個新的表現重力Wa。這個新的載荷大於w,也大於氣動力R,由於升力不足以平衡wa的分力,所以會導致高度損失。這種情況如發生在低空則往往會導致墜地和造成傷亡的嚴重後果,這是需要待別引起重視的。一般情況下操縱滑翔傘轉彎時,滑翔傘與水平面的傾角不應大於30度。
【滑翔傘的最佳效能】
滑翔比直接與滑翔軌跡有關。所謂滑翔比是指在單位時間內滑翔傘向前運動的水平距離與垂直下降距離的比值或水平速度與垂直下降速度的比值。這個比值的大小在一定程度上反應了滑翔傘效能的高低。初級滑翔傘的滑翔比在3:1—6:1之間;而中高階滑翔傘的滑翔比大多在5:1—9:1之間,部分競賽型高效能滑翔傘的滑翔比已接近於10:1(即水平前進10米,垂直下降1米)。滑翔傘的滑翔比也可以簡單地看作是升力L與阻力D之比。要提高滑翔傘滑翔比的途徑應該從加大升力,減小阻力著手,而決定傘衣最大滑翔比(L/D)MAX主要取決於翼型和展弦比。這裡要注意的是:柔性翼決不可一味追求氣動效能,加大展弦比,減薄翼型這將造成傘翼極容易塌陷,並恢復困難。動力滑翔傘由於有發動機,所以動力傘翼可犧牲一些空氣動力效能,換取更大的傘翼剛性及穩定性,這並不代表動力傘翼低階,而是不同