把周角360等分,每一等分叫1°的角。
把圓周360等分,每一等分叫1°的弧。
所以:弧的度數等於它所對圓心角的度數。
“度數相等”用這個符號表示,讀作“度數相等”.例如,∠AOB和弧AB的度數相等,就記作∠AOB度數相等弧AB。
弧不僅有度數,還有長度,因此,在表示圓周角等於它所對弧度數一半的時候,要寫清楚。
如果沒有指明"度數",等號上面要加上m,它的意思是弧的"度數";
假如句子中有"度數"字樣,則不必加m.如"∠A=(1/2)弧BC的度數"。
圓心角的特點:
①頂點是圓心;
②兩條邊都與圓周相交。
有關圓心角的計算公式:
①L(弧長)=n/180Xπr(n為圓心角度數,以下同);
②S(扇形面積)=n/360Xπr²;
④K=2Rsin(n/2)K=弦長;n=弦所對的圓心角,以度計。
圓周角的定義:
頂點在圓周上,並且兩邊都和圓相交的角叫做圓周角。
圓周角的定理及推論:
①圓周角度數定理,圓周角的度數等於它所對的弧的度數的一半
②同圓或等圓中,圓周角等於它所對的弧上的圓心角的一半
④半圓(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑
⑤圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。
把周角360等分,每一等分叫1°的角。
把圓周360等分,每一等分叫1°的弧。
所以:弧的度數等於它所對圓心角的度數。
“度數相等”用這個符號表示,讀作“度數相等”.例如,∠AOB和弧AB的度數相等,就記作∠AOB度數相等弧AB。
弧不僅有度數,還有長度,因此,在表示圓周角等於它所對弧度數一半的時候,要寫清楚。
如果沒有指明"度數",等號上面要加上m,它的意思是弧的"度數";
假如句子中有"度數"字樣,則不必加m.如"∠A=(1/2)弧BC的度數"。
圓心角的特點:
①頂點是圓心;
②兩條邊都與圓周相交。
有關圓心角的計算公式:
①L(弧長)=n/180Xπr(n為圓心角度數,以下同);
②S(扇形面積)=n/360Xπr²;
④K=2Rsin(n/2)K=弦長;n=弦所對的圓心角,以度計。
圓周角的定義:
頂點在圓周上,並且兩邊都和圓相交的角叫做圓周角。
圓周角的定理及推論:
①圓周角度數定理,圓周角的度數等於它所對的弧的度數的一半
②同圓或等圓中,圓周角等於它所對的弧上的圓心角的一半
④半圓(或直徑)所對圓周角是直角,90°的圓周角所對的弦是直徑
⑤圓的內接四邊形的對角互補,並且任何一個外角都等於它的內對角。