回覆列表
  • 1 # 十二隻猴子

    具有在一定的低溫條件下呈現出電阻等於零以及排斥磁力線的性質的材料。現已發現有28種元素和幾千種合金和化合物可以成為超導體。

      特性 超導材料和常規導電材料的效能有很大的不同。主要有以下效能。①零電阻性:超導材料處於超導態時電阻為零,能夠無損耗地傳輸電能。如果用磁場在超導環中引發感生電流,這一電流可以毫不衰減地維持下去。這種“持續電流”已多次在實驗中觀察到。②完全抗磁性:超導材料處於超導態時,只要外加磁場不超過一定值,磁力線不能透入,超導材料內的磁場恆為零。③約瑟夫森效應:兩超導材料之間有一薄絕緣層(厚度約1nm)而形成低電阻連線時,會有電子對穿過絕緣層形成電流,而絕緣層兩側沒有電壓,即絕緣層也成了超導體。當電流超過一定值後,絕緣層兩側出現電壓U(也可加一電壓U),同時,直流電流變成高頻交流電,並向外輻射電磁波,其頻率為,其中h為普朗克常數,e為電子電荷。這些特性構成了超導材料在科學技術領域越來越引人注目的各類應用的依據。

      基本臨界參量 有以下3個基本臨界參量。①臨界溫度:外磁場為零時超導材料由正常態轉變為超導態(或相反)的溫度,以Tc表示。Tc值因材料不同而異。已測得超導材料的最低Tc是鎢,為0.012K。到1987年,臨界溫度最高值已提高到100K左右。②臨界磁場:使超導材料的超導態破壞而轉變到正常態所需的磁場強度,以Hc表示。Hc與溫度T的關係為Hc=H0[1-(T/Tc)2],式中H0為0K時的臨界磁場。③臨界電流和臨界電流密度:透過超導材料的電流達到一定數值時也會使超導態破態而轉變為正常態,以Ic表示。Ic一般隨溫度和外磁場的增加而減少。單位截面積所承載的Ic稱為臨界電流密度,以Jc表示。

      超導材料的這些參量限定了應用材料的條件,因而尋找高參量的新型超導材料成了人們研究的重要課題。以Tc為例,從1911年荷蘭物理學家H.開默林-昂內斯發現超導電性(Hg,Tc=4.2K)起,直到1986年以前,人們發現的最高的Tc才達到23.2K(Nb3Ge,1973)。1986年瑞士物理學家K.A.米勒和聯邦德國物理學家J.G.貝德諾爾茨發現了氧化物陶瓷材料的超導電性,從而將Tc提高到35K。之後僅一年時間,新材料的Tc已提高到100K左右。這種突破為超導材料的應用開闢了廣闊的前景,米勒和貝德諾爾茨也因此榮獲1987年諾貝爾物理學獎金。

      分類 超導材料按其化學成分可分為元素材料、合金材料、化合物材料和超導陶瓷。①超導元素:在常壓下有28種元素具超導電性,其中鈮(Nb)的Tc最高,為9.26K。電工中實際應用的主要是鈮和鉛(Pb,Tc=7.201K),已用於製造超導交流電力電纜、高Q值諧振腔等。②合金材料:超導元素加入某些其他元素作合金成分,可以使超導材料的全部效能提高。如最先應用的鈮鋯合金(Nb-75Zr),其Tc為10.8K,Hc為8.7特。繼後發展了鈮鈦合金,雖然Tc稍低了些,但Hc高得多,在給定磁場能承載更大電流。其效能是Nb-33Ti,Tc=9.3K,Hc=11.0特;Nb-60Ti,Tc=9.3K,Hc=12特(4.2K)。目前鈮鈦合金是用於7~8特磁場下的主要超導磁體材料。鈮鈦合金再加入鉭的三元合金,效能進一步提高,Nb-60Ti-4Ta的效能是,Tc=9.9K,Hc=12.4特(4.2K);Nb-70Ti-5Ta的效能是,Tc=9.8K,Hc=12.8特。③超導化合物:超導元素與其他元素化合常有很好的超導效能。如已大量使用的Nb3Sn,其Tc=18.1K,Hc=24.5特。其他重要的超導化合物還有V3Ga,Tc=16.8K,Hc=24特;Nb3Al,Tc=18.8K,Hc=30特。④超導陶瓷:20世紀80年代初,米勒和貝德諾爾茨開始注意到某些氧化物陶瓷材料可能有超導電性,他們的小組對一些材料進行了試驗,於1986年在鑭-鋇-銅-氧化物中發現了Tc=35K的超導電性。1987年,中國、美國、日本等國科學家在鋇-釔-銅氧化物中發現Tc處於液氮溫區有超導電性,使超導陶瓷成為極有發展前景的超導材料。

      應用 超導材料具有的優異特性使它從被發現之日起,就向人類展示了誘人的應用前景。但要實際應用超導材料又受到一系列因素的制約,這首先是它的臨界參量,其次還有材料製作的工藝等問題(例如脆性的超導陶瓷如何製成柔細的線材就有一系列工藝問題)。到80年代,超導材料的應用主要有:①利用材料的超導電性可製作磁體,應用於電機、高能粒子加速器、磁懸浮運輸、受控熱核反應、儲能等;可製作電力電纜,用於大容量輸電(功率可達10000MVA);可製作通訊電纜和天線,其效能優於常規材料。②利用材料的完全抗磁性可製作無摩擦陀螺儀和軸承。③利用約瑟夫森效應可製作一系列精密測量儀表以及輻射探測器、微波發生器、邏輯元件等。利用約瑟夫森結作計算機的邏輯和儲存元件,其運算速度比高效能積體電路的快10~20倍,功耗只有四分之一。

    1911年,荷蘭物理學家昂尼斯(1853~1926)發現,水銀的電阻率並不象預料的那樣隨溫度降低逐漸減小,而是當溫度降到4.15K附近時,水銀的電阻突然降到零。某些金屬、合金和化合物,在溫度降到絕對零度附近某一特定溫度時,它們的電阻率突然減小到無法測量的現象叫做超導現象,能夠發生超導現象的物質叫做超導體。超導體由正常態轉變為超導態的溫度稱為這種物質的轉變溫度(或臨界溫度)TC。現已發現大多數金屬元素以及數以千計的合金、化合物都在不同條件下顯示出超導性。如鎢的轉變溫度為0.012K,鋅為0.75K,鋁為1.196K,鉛為7.193K。

    超導體得天獨厚的特性,使它可能在各種領域得到廣泛的應用。但由於早期的超導體存在於液氦極低溫度條件下,極大地限制了超導材料的應用。人們一直在探索高溫超導體,從1911年到1986年,75年間從水銀的4.2K提高到鈮三鍺的23.22K,才提高了19K。

    1986年,高溫超導體的研究取得了重大的突破。掀起了以研究金屬氧化物陶瓷材料為物件,以尋找高臨界溫度超導體為目標的“超導熱”。全世界有260多個實驗小組參加了這場競賽。

    1986年1月,美國國際商用機器公司設在瑞士蘇黎世實驗室科學家柏諾茲和繆勒首先發現鋇鑭銅氧化物是高溫超導體,將超導溫度提高到30K;緊接著,日本東京大學工學部又將超導溫度提高到37K;12月30日,美國休斯敦大學宣佈,美籍華裔科學家朱經武又將超導溫度提高到40.2K。

    1987年1月初,日本川崎國立分子研究所將超導溫度提高到43K;不久日本綜合電子研究所又將超導溫度提高到46K和53K。中國科學院物理研究所由趙忠賢、陳立泉領導的研究組,獲得了48.6K的鍶鑭銅氧系超導體,並看到這類物質有在70K發生轉變的跡象。2月15日美國報道朱經武、吳茂昆獲得了98K超導體。2月20日,中國也宣佈發現100K以上超導體。3月3日,日本宣佈發現123K超導體。3月12日中國北京大學成功地用液氮進行超導磁懸浮實驗。3月27日美國華裔科學家又發現在氧化物超導材料中有轉變溫度為240K的超導跡象。很快日本鹿兒島大學工學部發現由鑭、鍶、銅、氧組成的陶瓷材料在14℃溫度下存在超導跡象。高溫超導體的巨大突破,以液態氮代替液態氦作超導製冷劑獲得超導體,使超導技術走向大規模開發應用。氮是空氣的主要成分,液氮製冷機的效率比液氦至少高10倍,所以液氮的價格實際僅相當於液氦的1/100。液氮製冷裝置簡單,因此,現有的高溫超導體雖然還必須用液氮冷卻,但卻被認為是20世紀科學上最偉大的發現之一。

  • 2 # 小W我

    超導材料最誘人的應用是發電、輸電和儲能。  由於超導材料在超導狀態下具有零電阻和完全的抗磁性,因此只需消耗極少的電能,就可以獲得10萬高斯以上的穩態強磁場。而用常規導體做磁體,要產生這麼大的磁場,需要消耗3.5兆瓦的電能及大量的冷卻水,投資巨大。  超導磁體可用於製作交流超導發電機、磁流體發電機和超導輸電線路等。  超導發電機 在電力領域,利用超導線圈磁體可以將發電機的磁場強度提高到5萬~6萬高斯,並且幾乎沒有能量損失,這種發電機便是交流超導發電機。超導發電機的單機發電容量比常規發電機提高5~10倍,達1萬兆瓦,而體積卻減少1/2,整機重量減輕1/3,發電效率提高50%。  磁流體發電機 磁流體發電機同樣離不開超導強磁體的幫助。磁流體發電發電,是利用高溫導電性氣體(等離子體)作導體,並高速透過磁場強度為5萬~6萬高斯的強磁場而發電。磁流體發電機的結構非常簡單,用於磁流體發電的高溫導電性氣體還可重複利用。  超導輸電線路 超導材料還可以用於製作超導電線和超導變壓器,從而把電力幾乎無損耗地輸送給使用者。據統計,目前的銅或鋁導線輸電,約有15%的電能損耗在輸電線路上,光是在中國,每年的電力損失即達1000多億度。若改為超導輸電,節省的電能相當於新建數十個大型發電廠。廣闊的超導應用  高溫超導材料的用途非常廣闊,大致可分為三類:大電流應用(強電應用)、電子學應用(弱電應用)和抗磁性應用。大電流應用即前述的超導發電、輸電和儲能;電子學應用包括超導計算機、超導天線、超導微波器件等;抗磁性主要應用於磁懸浮列車和熱核聚變反應堆等。  超導磁懸浮列車 利用超導材料的抗磁性,將超導材料放在一塊永久磁體的上方,由於磁體的磁力線不能穿過超導體,磁體和超導體之間會產生排斥力,使超導體懸浮在磁體上方。利用這種磁懸浮效應可以製作高速超導磁懸浮列車。  超導計算機 高速計算機要求積體電路晶片上的元件和連線線密集排列,但密集排列的電路在工作時會發生大量的熱,而散熱是超大規模整合電路面臨的難題。超導計算機中的超大規模積體電路,其元件間的互連線用接近零電阻和超微發熱的超導器件來製作,不存在散熱問題,同時計算機的運算速度大大提高。此外,科學家正研究用半導體和超導體來製造電晶體,甚至完全用超導體來製作電晶體。  核聚變反應堆“磁封閉體” 核聚變反應時,內部溫度高達1億~2億℃,沒有任何常規材料可以包容這些物質。而超導體產生的強磁場可以作為“磁封閉體”,將熱核反應堆中的超高溫等離子體包圍、約束起來,然後慢慢釋放,從而使受控核聚變能源成為21世紀前景廣闊的新能源。

  • 中秋節和大豐收的關聯?
  • 應給勞動者的勞動合同未給,如果打官司來,怎樣才能證明呢?