還是讓我來給你解決這個問題吧,如果一個方程含有兩個未知數,並且所含未知項的次數,數是1,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有一個解,有時沒有解。二元一次方程的一般形式:ax+by+c=0(a,b不為0)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個公共解,叫做二元一次方程組的解。
將方程組中的未知數個數由多化少,逐一解決的想法,叫做消元思想。如:{5x+6y=7 2x+3y=4,變為{5x+6y=7 4x+6y=8
代入消元法。
加減消元法。
順序消元法。(這種方法不常用)
(1)x-y=3
(2)3x-8y=4
(3)x=y+3
代入得(2)
3×(y+3)-8y=4
y=1
所以x=4
這個二元一次方程組的解
x=4
(一)加減-代入混合使用的方法.
例1,13x+14y=41 (1)
14x+13y=40 (2)
解:(2)-(1)得
x-y=-1
x=y-1 (3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特點:兩方程相加減,單個x或單個y,這樣就適用接下來的代入消元.
(二)換元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可寫為
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特點:兩方程中都含有相同的代數式,如題中的x+5,y-4之類,換元后可簡化方程也是主要原因。
(3)另類換元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可寫為:5t+6*4t=29
29t=29
t=1
所以x=1,y=4
還有整體法和換元法是類似的
還是讓我來給你解決這個問題吧,如果一個方程含有兩個未知數,並且所含未知項的次數,數是1,那麼這個整式方程就叫做二元一次方程,有無窮個解,若加條件限定有有限個解。二元一次方程組,則一般有一個解,有時沒有解。二元一次方程的一般形式:ax+by+c=0(a,b不為0)。
使二元一次方程兩邊的值相等的兩個未知數的值,叫做二元一次方程的解。
二元一次方程組的兩個公共解,叫做二元一次方程組的解。
將方程組中的未知數個數由多化少,逐一解決的想法,叫做消元思想。如:{5x+6y=7 2x+3y=4,變為{5x+6y=7 4x+6y=8
代入消元法。
加減消元法。
順序消元法。(這種方法不常用)
(1)x-y=3
(2)3x-8y=4
(3)x=y+3
代入得(2)
3×(y+3)-8y=4
y=1
所以x=4
這個二元一次方程組的解
x=4
y=1
(一)加減-代入混合使用的方法.
例1,13x+14y=41 (1)
14x+13y=40 (2)
解:(2)-(1)得
x-y=-1
x=y-1 (3)
把(3)代入(1)得
13(y-1)+14y=41
13y-13+14y=41
27y=54
y=2
把y=2代入(3)得
x=1
所以:x=1,y=2
特點:兩方程相加減,單個x或單個y,這樣就適用接下來的代入消元.
(二)換元法
例2,(x+5)+(y-4)=8
(x+5)-(y-4)=4
令x+5=m,y-4=n
原方程可寫為
m+n=8
m-n=4
解得m=6,n=2
所以x+5=6,y-4=2
所以x=1,y=6
特點:兩方程中都含有相同的代數式,如題中的x+5,y-4之類,換元后可簡化方程也是主要原因。
(3)另類換元
例3,x:y=1:4
5x+6y=29
令x=t,y=4t
方程2可寫為:5t+6*4t=29
29t=29
t=1
所以x=1,y=4
還有整體法和換元法是類似的