聲納是利用水中聲波進行探測、定位和通訊的電子裝置。聲學(聲納)是各國海軍進行水下監視使用的主要技術,用於對水下目標進行探測、分類、定位和跟蹤;進行水下通訊和導航,保障艦艇、反潛飛機和反潛直升機的戰術機動和水中武器的使用。此外,聲納技術還廣泛用於魚雷制導、水雷引信,以及魚群探測、海洋石油勘探、船舶導航、水下作業、水文測量和海底地質地貌的勘測等。聲納可按工作方式,按裝備物件,按戰術用途、按基陣攜帶方式和技術特點等分類方法分成為各種不同的聲納。例如按工作方式可分為主動聲納和被動聲納;按裝備物件可分為水面艦艇聲納、潛艇聲納、航空聲納、行動式聲納和海岸聲納,等等。
聲納裝置一般由基陣、電子機櫃和輔助裝置三部分組成。基陣由水聲換能器以一定幾何圖形排列組合而成,其外形通常為球形、柱形、平板形或線列行,有接收基陣、發射機陣或收發合一基陣之分。電子機櫃一般有發射、接收、顯示和控制等分系統。輔助裝置包括電源裝置、連線電纜、水下接線箱和增音機、與聲納基陣的傳動控制相配套的升降、迴轉、俯仰、收放、拖曳、吊放、投放等裝置,以及聲納導流罩等。
主動聲納技術是指聲納主動發射聲波"照射"目標,而後接收水中目標反射的回波以測定目標的引數。大多數採用脈衝體制,也有采用連續波體制的。被動聲納技術是指聲納被動接收艦船等水中目標產生的輻射噪聲和水聲裝置發射的訊號,以測定目標的方位。
影響聲納工作效能的因素除聲納本身的技術狀況外,外界條件的影響很嚴重。比較直接的因素有傳播衰減、多路徑效應、混響干擾、海洋噪聲、自噪聲、目標反射特徵或輻射噪聲強度等,它們大多與海洋環境因素有關。例如,聲波在傳播途中受海水介質不均勻分佈和海面、海底的影響和制約,會產生折射、散射、反射和干涉,會產生聲線彎曲、訊號起伏和畸變,造成傳播途徑的改變,以及出現聲陰區,嚴重影響聲納的作用距離和測量精度。現代聲納根據海區聲速--深度變化形成的傳播條件,可適當選擇基陣工作深度和俯仰角,利用聲波的不同傳播途徑(直達聲、海底反射聲、會聚區、深海聲道)來克服水聲傳播條件的不利影響,提高聲納探測距離。又如,運載平臺的自噪聲主要與航速有關,航速越大自噪聲越大,聲納作用距離就越近,反之則越遠;目標反射本領越大,被對方主動聲納發現的距離就越遠;目標輻射噪聲強度越大,被對方被動聲納發現的距離就越遠
聲納是利用水中聲波進行探測、定位和通訊的電子裝置。聲學(聲納)是各國海軍進行水下監視使用的主要技術,用於對水下目標進行探測、分類、定位和跟蹤;進行水下通訊和導航,保障艦艇、反潛飛機和反潛直升機的戰術機動和水中武器的使用。此外,聲納技術還廣泛用於魚雷制導、水雷引信,以及魚群探測、海洋石油勘探、船舶導航、水下作業、水文測量和海底地質地貌的勘測等。聲納可按工作方式,按裝備物件,按戰術用途、按基陣攜帶方式和技術特點等分類方法分成為各種不同的聲納。例如按工作方式可分為主動聲納和被動聲納;按裝備物件可分為水面艦艇聲納、潛艇聲納、航空聲納、行動式聲納和海岸聲納,等等。
聲納裝置一般由基陣、電子機櫃和輔助裝置三部分組成。基陣由水聲換能器以一定幾何圖形排列組合而成,其外形通常為球形、柱形、平板形或線列行,有接收基陣、發射機陣或收發合一基陣之分。電子機櫃一般有發射、接收、顯示和控制等分系統。輔助裝置包括電源裝置、連線電纜、水下接線箱和增音機、與聲納基陣的傳動控制相配套的升降、迴轉、俯仰、收放、拖曳、吊放、投放等裝置,以及聲納導流罩等。
主動聲納技術是指聲納主動發射聲波"照射"目標,而後接收水中目標反射的回波以測定目標的引數。大多數採用脈衝體制,也有采用連續波體制的。被動聲納技術是指聲納被動接收艦船等水中目標產生的輻射噪聲和水聲裝置發射的訊號,以測定目標的方位。
影響聲納工作效能的因素除聲納本身的技術狀況外,外界條件的影響很嚴重。比較直接的因素有傳播衰減、多路徑效應、混響干擾、海洋噪聲、自噪聲、目標反射特徵或輻射噪聲強度等,它們大多與海洋環境因素有關。例如,聲波在傳播途中受海水介質不均勻分佈和海面、海底的影響和制約,會產生折射、散射、反射和干涉,會產生聲線彎曲、訊號起伏和畸變,造成傳播途徑的改變,以及出現聲陰區,嚴重影響聲納的作用距離和測量精度。現代聲納根據海區聲速--深度變化形成的傳播條件,可適當選擇基陣工作深度和俯仰角,利用聲波的不同傳播途徑(直達聲、海底反射聲、會聚區、深海聲道)來克服水聲傳播條件的不利影響,提高聲納探測距離。又如,運載平臺的自噪聲主要與航速有關,航速越大自噪聲越大,聲納作用距離就越近,反之則越遠;目標反射本領越大,被對方主動聲納發現的距離就越遠;目標輻射噪聲強度越大,被對方被動聲納發現的距離就越遠