1+1
一加一,在計算正確的情況下等於二。
但在現實中,因情況不定,它也可以等於一,等於三,等於二,等於任何一個數。
比如一堆穀子加一堆穀子,它還是一堆穀子。
再比如,一個成本加上一個成本,它可以等於無數個利潤。
一加一隻是在最理想的情況下等於二。
而在現實中,即使是最小的粒子夸克。兩個在一起也能組成介子。
哥德巴赫猜想
1742年給尤拉的信中哥德巴赫提出了以下猜想:任一大於2的整數都可寫成三個質數之和 。但是哥德巴赫自己無法證明它,於是就寫信請教赫赫有名的大數學家尤拉幫忙證明,但是一直到死,尤拉也無法證明。 因現今數學界已經不使用“1也是素數”這個約定,原初猜想的現代陳述為:任一大於5的整數都可寫成三個質數之和。(n>5:當n為偶數,n=2+(n-2),n-2也是偶數,可以分解為兩個質數的和;當n為奇數,n=3+(n-3),n-3也是偶數,可以分解為兩個質數的和)尤拉在回信中也提出另一等價版本,即任一大於2的偶數都可寫成兩個質數之和。今日常見的猜想陳述為尤拉的版本。把命題"任一充分大的偶數都可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b"。1966年陳景潤證明了"1+2"成立,即"任一充分大的偶數都可以表示成二個素數的和,或是一個素數和一個半素數的和"。
今日常見的猜想陳述為尤拉的版本,即任一大於2的偶數都可寫成兩個素數之和,亦稱為“強哥德巴赫猜想”或“關於偶數的哥德巴赫猜想”。
從關於偶數的哥德巴赫猜想,可推出:任一大於7的奇數都可寫成三個質數之和的猜想。後者稱為“弱哥德巴赫猜想”或“關於奇數的哥德巴赫猜想”。若關於偶數的哥德巴赫猜想是對的,則關於奇數的哥德巴赫猜想也會是對的。2013年5月,巴黎高等師範學院研究員哈洛德·賀歐夫各特發表了兩篇論文,宣佈徹底證明了弱哥德巴赫猜想。、
1+1
一加一,在計算正確的情況下等於二。
但在現實中,因情況不定,它也可以等於一,等於三,等於二,等於任何一個數。
比如一堆穀子加一堆穀子,它還是一堆穀子。
再比如,一個成本加上一個成本,它可以等於無數個利潤。
一加一隻是在最理想的情況下等於二。
而在現實中,即使是最小的粒子夸克。兩個在一起也能組成介子。
擴充套件資料哥德巴赫猜想
1742年給尤拉的信中哥德巴赫提出了以下猜想:任一大於2的整數都可寫成三個質數之和 。但是哥德巴赫自己無法證明它,於是就寫信請教赫赫有名的大數學家尤拉幫忙證明,但是一直到死,尤拉也無法證明。 因現今數學界已經不使用“1也是素數”這個約定,原初猜想的現代陳述為:任一大於5的整數都可寫成三個質數之和。(n>5:當n為偶數,n=2+(n-2),n-2也是偶數,可以分解為兩個質數的和;當n為奇數,n=3+(n-3),n-3也是偶數,可以分解為兩個質數的和)尤拉在回信中也提出另一等價版本,即任一大於2的偶數都可寫成兩個質數之和。今日常見的猜想陳述為尤拉的版本。把命題"任一充分大的偶數都可以表示成為一個素因子個數不超過a個的數與另一個素因子不超過b個的數之和"記作"a+b"。1966年陳景潤證明了"1+2"成立,即"任一充分大的偶數都可以表示成二個素數的和,或是一個素數和一個半素數的和"。
今日常見的猜想陳述為尤拉的版本,即任一大於2的偶數都可寫成兩個素數之和,亦稱為“強哥德巴赫猜想”或“關於偶數的哥德巴赫猜想”。
從關於偶數的哥德巴赫猜想,可推出:任一大於7的奇數都可寫成三個質數之和的猜想。後者稱為“弱哥德巴赫猜想”或“關於奇數的哥德巴赫猜想”。若關於偶數的哥德巴赫猜想是對的,則關於奇數的哥德巴赫猜想也會是對的。2013年5月,巴黎高等師範學院研究員哈洛德·賀歐夫各特發表了兩篇論文,宣佈徹底證明了弱哥德巴赫猜想。、