回覆列表
  • 1 # 使用者3410908739077

    世界十大數學家是:1.歐幾里得、2.劉微、3.秦九韶、4.笛卡爾、5.費馬、6.萊布尼茨、7.尤拉、8.拉格朗日、9.高斯、10.希爾伯特

      1.歐幾里德(EuclidofAlexandria),希臘數學家。約生於公元前330年,約歿於公元前260年。

      歐幾里德是古代希臘最負盛名、最有影響的數學家之一,他是亞歷山大里亞學派的成員。歐幾里德寫過一本書,書名為《幾何原本》(Elements)共有13卷。這一著作對於幾何學、數學和科學的未來發展,對於西方人的整個思維方法都有很大的影響。《幾何原本》的主要物件是幾何學,但它還處理了數論、無理數理論等其他課題。歐幾里德使用了公理化的方法。公理(axioms)就是確定的、不需證明的基本命題,一切定理都由此演繹而出。在這種演繹推理中,每個證明必須以公理為前提,或者以被證明了的定理為前提。這一方法後來成了建立任何知識體系的典範,在差不多2000年間,被奉為必須遵守的嚴密思維的範例。《幾何原本》是古希臘數學發展的頂峰。

      歐幾里得(活動於約前300-?)

      古希臘數學家。以其所著的《幾何原本》(簡稱《原本》)聞名於世。關於他的生平,現在知道的很少。早年大概就學於雅典,深知柏拉圖的學說。公元前300年左右,在托勒密王(公元前364~前283)的邀請下,來到亞歷山大,長期在那裡工作。他是一位溫良敦厚的教育家,對有志數學之士,總是循循善誘。但反對不肯刻苦鑽研、投機取巧的作風,也反對狹隘實用觀點。據普羅克洛斯(約410~485)記載,托勒密王曾經問歐幾里得,除了他的《幾何原本》之外,還有沒有其他學習幾何的捷徑。歐幾里得回答說:“在幾何裡,沒有專為國王鋪設的大道。”這句話後來成為傳誦千古的學習箴言。斯托貝烏斯(約500)記述了另一則故事,說一個學生才開始學第一個命題,就問歐幾里得學了幾何學之後將得到些什麼。歐幾里得說:給他三個錢幣,因為他想在學習中獲取實利。

      歐幾里得將公元前7世紀以來希臘幾何積累起來的豐富成果整理在嚴密的邏輯系統之中,使幾何學成為一門獨立的、演繹的科學。除了《幾何原本》之外,他還有不少著作,可惜大都失傳。《已知數》是除《原本》之外惟一儲存下來的他的希臘文純粹幾何著作,體例和《原本》前6卷相近,包括94個命題,指出若圖形中某些元素已知,則另外一些元素也可以確定。《圖形的分割》現存拉丁文字與阿拉伯文字,論述用直線將已知圖形分為相等的部分或成比例的部分。《光學》是早期幾何光學著作之一,研究透視問題,敘述光的入射角等於反射角,認為視覺是眼睛發出光線到達物體的結果。還有一些著作未能確定是否屬於歐幾里得,而且已經散失。

      歐幾里德的《幾何原本》中收錄了23個定義,5個公理,5個公設,並以此推匯出48個命題(第一卷)。

      2.劉徽生平

      (生於公元250年左右),三國後期魏華人,是中國古代傑出的數學家,也是中國古典數學理論的奠基者之一.其生卒年月、生平事蹟,史書上很少記載。據有限史料推測,他是魏晉時代山東臨淄或淄川一帶人。終生未做官。

      著作

      劉徽的數學著作留傳後世的很少,所留之作均為久經輾轉傳抄。他的主要著作有:

      《九章算術注》10卷;

      《重差》1卷,至唐代易名為《海島算經》;

      《九章重差圖》l卷,可惜後兩種都在宋代失傳。

      數學成就

      劉徽的數學成就大致為兩方面:

      一是清理中國古代數學體系並奠定了它的理論基礎。這方面集中體現在《九章算術注》中。它實已形成為一個比較完整的理論體系:

      ①在數系理論方面

      用數的同類與異類闡述了通分、約分、四則運算,以及繁分數化簡等的運演算法則;在開方術的註釋中,他從開方不盡的意義出發,論述了無理方根的存在,並引進了新數,創造了用十進分數無限逼近無理根的方法。

      ②在籌式演算理論方面

      先給率以比較明確的定義,又以遍乘、通約、齊同等三種基本運算為基礎,建立了數與式運算的統一的理論基礎,他還用“率”來定義中國古代數學中的“方程”,即現代數學中線性方程組的增廣矩陣。

      逐一論證了有關勾股定理與解勾股形的計算原理,建立了相似勾股形理論,發展了勾股測量術,透過對“勾中容橫”與“股中容直”之類的典型圖形的論析,形成了中國特色的相似理論。

      ④在面積與體積理論方面

      用出入相補、以盈補虛的原理及“割圓術”的極限方法提出了劉徽原理,並解決了多種幾何形、幾何體的面積、體積計算問題。這些方面的理論價值至今仍閃爍著餘輝。

      二是在繼承的基礎上提出了自己的創見。這方面主要體現為以下幾項有代表性的創見:

      ①割圓術與圓周率

      他在《九章算術?圓田術》注中,用割圓術證明了圓面積的精確公式,並給出了計算圓周率的科學方法。他首先從圓內接六邊形開始割圓,每次邊數倍增,算到192邊形的面積,得到π=157/50=3.14,又算到3072邊形的面積,得到π=3927/1250=3.1416,稱為“徽率”。

      ②劉徽原理

      在《九章算術?陽馬術》注中,他在用無限分割的方法解決錐體體積時,提出了關於多面體體積計算的劉徽原理。

      在《九章算術?開立圓術》注中,他指出了球體積公式V=9D3/16(D為球直徑)的不精確性,並引入了“牟合方蓋”這一著名的幾何模型。“牟合方蓋”是指正方體的兩個軸互相垂直的內切圓柱體的貫交部分。

      ④方程新術

      在《九章算術?方程術》注中,他提出瞭解線性方程組的新方法,運用了比率演算法的思想。

      ⑤重差術

      在白撰《海島算經》中,他提出了重差術,採用了重表、連索和累矩等測高測遠方法。他還運用“類推衍化”的方法,使重差術由兩次測望,發展為“三望”、“四望”。而印度在7世紀,歐洲在15~16世紀才開始研究兩次測望的問題。

      貢獻和地位

      劉徽的工作,不僅對中國古代數學發展產生了深遠影響,而且在世界數學吏上也確立了崇高的歷史地位。鑑於劉徽的巨大貢獻,所以不少書上把他稱作“中國數學史上的牛頓”。

      費馬

      費馬(1601~1665)

      Fermat,Pierrede

      費馬是法國數學家,1601年8月17日出生於法國南部圖盧茲附近的博蒙·德·洛馬涅。他的父親多米尼克·費馬在當地開了一家大皮革商店,擁有相當豐厚的產業,使得費馬從小生活在富裕舒適的環境中。

      費馬的父親由於富有和經營有道,頗受人們尊敬,並因此獲得了地方事務顧問的頭銜,但費馬小的時候並沒有因為家境的富裕而產生多少優越感。費馬的母親名叫克拉萊·德·羅格,出身穿袍貴族。多米尼克的大富與羅格的大貴族構築了費馬極富貴的身價。

      費馬小時候受教於他的叔叔皮埃爾,受到了良好的啟蒙教育,培養了他廣泛的興趣和愛好,對他的性格也產生了重要的影響。直到14歲時,費馬才進入博蒙·德·洛馬涅公學,畢業後先後在奧爾良大學和圖盧茲大學學習法律。

      17世紀的法國,男子最講究的職業是當律師,因此,男子學習法律成為時髦,也使人敬羨。有趣的是,法國為那些有產的而缺少資歷的“準律師”儘快成為律師創造了很好的條件。1523年,佛朗期瓦一世組織成立了一個專門鬻賣官爵的機關,公開出售官職。這種官職鬻賣的社會現象一經產生,便應時代的需要而一發不可收拾,且彌留今日。

      鬻賣官職,一方面迎合了那些富有者,使其獲得官位從而提高社會地位,另一方面也使政府的財政狀況得以好轉。因此到了17世紀,除宮廷官和軍官以外的任何官職都可以買賣了。直到今日,法院的書記官、公證人、傳達人等職務,仍沒有完全擺脫買賣性質。法國的買官特產,使許多中產階級從中受惠,費馬也不例外。費馬尚沒有大學畢業,便在博蒙·德·洛馬涅買好了“律師”和“參議員”的職位。等到費馬畢業返回家鄉以後,他便很容易地當上了圖盧茲議會的議員,時值1631年。

      儘管費馬從步入社會直到去世都沒有失去官職,而且逐年得到提升,但是據記載,費馬並沒有什麼政績,應付官場的能力也極普通,更談不上什麼領導才能。不過,費馬並未因此而中斷升遷。在費馬任了七年地方議會議員之後,升任了調查參議員,這個官職有權對行政當局進行調查和提出質疑。

      1642年,有一位權威人士叫勃里斯亞斯,他是最高法院顧問。勃里斯亞斯推薦費馬進入了最高刑事法庭和法國大理院主要法庭,這使得費馬以後得到了更好的升遷機會。1646年,費馬升任議會首席發言人,以後還當過天主教聯盟的主席等職。費馬的官場生涯沒有什麼突出政績值得稱道,不過費馬從不利用職權向人們勒索、從不受賄、為人敦厚、公開廉明,贏得了人們的信任和稱讚。

      費馬的婚姻使費馬躋身於穿袍貴族的行列,費馬娶了他的舅表妹露伊絲·德·羅格。原本就為母親的貴族血統而感驕傲的費馬,如今乾脆在自己的姓名上加上了貴族姓氏的標誌“de”。

      費馬生有三女二男,除了大女兒克拉萊出嫁之外,四個子女都使費馬感到體面。兩個女兒當上了牧師,次子當上了菲瑪雷斯的副主教。尤其是長子克萊曼特·薩摩爾,他不僅繼承了費馬的公職,在1665年當上了律師,而且還整理了費馬的數學論著。如果不是費馬長子積極出版費馬的數學論著,很難說費馬能對數學產生如此重大的影響,因為大部分論文都是在費馬死後,由其長子負責發表的。從這個意義上說,薩摩爾也稱得上是費馬事業上的繼承人。

      對費馬來說,真正的事業是學術,尤其是數學。費馬通曉法語、義大利語、西班牙語、拉丁語和希臘語,而且還頗有研究。語言方面的博學給費馬的數學研究提供了語言工具和便利,使他有能力學習和了解阿拉伯和義大利的代數以及古希臘的數學。正是這些,可能為費馬在數學上的造詣莫定了良好基礎。在數學上,費馬不僅可以在數學王國裡自由馳騁,而且還可以站在數學天地之外鳥瞰數學。這也不能絕對歸於他的數學天賦,與他的博學多才多少也是有關係的。

      費馬生性內向,謙抑好靜,不善推銷自己,不善展示自我。因此他生前極少發表自己的論著,連一部完整的著作也沒有出版。他發表的一些文章,也總是隱姓埋名。《數學論集》還是費馬去世後由其長子將其筆記、批註及書信整理成書而出版的。我們現在早就認識到時間性對於科學的重要,即使在l7世紀,這個問題也是突出的。費馬的數學研究成果不及時發表,得不到傳播和發展,並不完全是個人的名譽損失,而是影響了那個時代數學前進的步伐。

      費馬一生身體健康,只是在1652年的瘟疫中險些喪命。1665年元旦一過,費馬開始感到身體有變,因此於1月l0日停職。第三天,費馬去世。費馬被安葬在卡斯特雷斯公墓,後來改葬在圖盧茲的家族墓地中。

      費馬一生從未受過專門的數學教育,數學研究也不過是業餘之愛好。然而,在17世紀的法國還找不到哪位數學家可以與之匹敵:他是解析幾何的發明者之一;對於微積分誕生的貢獻僅次於牛頓、萊布尼茨,機率論的主要創始人,以及獨承17世紀數論天地的人。此外,費馬對物理學也有重要貢獻。一代數學大才費馬堪稱是17世紀法國最偉大的數學家。

      17世紀伊始,就預示了一個頗為壯觀的數學前景。而事實上,這個世紀也正是數學史上一個輝煌的時代。幾何學首先成了這一時代最引入注目的引玉之明珠,由於幾何學的新方法—代數方法在幾何學上的應用,直接導致瞭解析幾何的誕生;射影幾何作為一種嶄新的方法開闢了新的領域;由古代的求積問題導致的極微分割方法引入幾何學,使幾何學產生了新的研究方向,並最終促進了微積分的發明。幾何學的重新崛起是與一代勤于思考、富於創造的數學家是分不開的,費馬就是其中的一位。

      對解析幾何的貢獻

      費馬獨立於笛卡兒發現瞭解析幾何的基本原理。

      1629年以前,費馬便著手重寫公元前三世紀古希臘幾何學家阿波羅尼奧斯失傳的《平面軌跡》一書。他用代數方法對阿波羅尼奧斯關於軌跡的一些失傳的證明作了補充,對古希臘幾何學,尤其是阿波羅尼奧斯圓錐曲線論進行了總結和整理,對曲線作了一般研究。並於1630年用拉丁文撰寫了僅有八頁的論文《平面與立體軌跡引論》。

      費馬於1636年與當時的大數學家梅森、羅貝瓦爾開始通訊,對自己的數學工作略有言及。但是《平面與立體軌跡引論》的出版是在費馬去世14年以後的事,因而1679年以前,很少有人瞭解到費馬的工作,而現在看來,費馬的工作卻是開創性的。

      《平面與立體軌跡引論》》中道出了費馬的發現。他指出:“兩個未知量決定的—個方程式,對應著一條軌跡,可以描繪出一條直線或曲線。”費馬的發現比笛卡爾發現解析幾何的基本原理還早七年。費馬在書中還對一般直線和圓的方程、以及關於雙曲線、橢圓、拋物線進行了討論。

      笛卡兒是從一個軌跡來尋找它的方程的,而費馬則是從方程出發來研究軌跡的,這正是解析幾何基本原則的兩個相反的方面。

      在1643年的一封信裡,費馬也談到了他的解析幾何思想。他談到了柱面、橢圓拋物面、雙葉雙曲面和橢球面,指出:含有三個未知量的方程表示一個曲面,並對此做了進一步地研究。

      對微積分的貢獻

      16、17世紀,微積分是繼解析幾何之後的最璀璨的明珠。人所共知,牛頓和萊布尼茨是微積分的締造者,並且在其之前,至少有數十位科學家為微積分的發明做了奠基性的工作。但在諸多先驅者當中,費馬仍然值得一提,主要原因是他為微積分概念的引出提供了與現代形式最接近的啟示,以致於在微積分領域,在牛頓和萊布尼茨之後再加上費馬作為創立者,也會得到數學界的認可。

      曲線的切線問題和函式的極大、極小值問題是微積分的起源之一。這項工作較為古老,最早可追溯到古希臘時期。阿基米德為求出一條曲線所包任意圖形的面積,曾藉助於窮竭法。由於窮竭法繁瑣笨拙,後來漸漸被人遺忘、直到16世紀才又被重視。由於開普勒在探索行星運動規律時,遇到了如何確定橢圓形面積和橢圓弧長的問題,無窮大和無窮小的概念被引入並代替了繁瑣的窮竭法。儘管這種方法並不完善,但卻為自卡瓦列裡到費馬以來的數學家開闢廠一個十分廣闊的思考空間。

      費馬建立了求切線、求極大值和極小值以及定積分方法,對微積分做出了重大貢獻。

      對機率論的貢獻

      早在古希臘時期,偶然性與必然性及其關係問題便引起了眾多哲學家的興趣與爭論,但是對其有數學的描述和處理卻是15世紀以後的事。l6世紀早期,義大利出現了卡爾達諾等數學家研究骰子中的博弈機會,在博弈的點中探求賭金的劃分問題。到了17世紀,法國的帕斯卡和費馬研究了義大利的帕喬裡的著作《摘要》,建立了通訊聯絡,從而建立了機率學的基礎。

      費馬考慮到四次賭博可能的結局有2×2×2×2=16種,除了一種結局即四次賭博都讓對手贏以外,其餘情況都是第一個賭徒獲勝。費馬此時還沒有使用機率一詞,但他卻得出了使第一個賭徒贏得機率是15/16,即有利情形數與所有可能情形數的比。這個條件在組合問題中一般均能滿足,例如紙牌遊戲,擲銀子和從罐子裡模球。其實,這項研究為機率的數學模型一機率空間的抽象奠定了博弈基礎,儘管這種總結是到了1933年才由柯爾莫戈羅夫作出的。

      費馬和帕斯卡在相互通訊以及著作中建立了機率論的基本原則——數學期望的概念。這是從點的數學問題開始的:在一個被假定有同等技巧的博弈者之間,在一箇中斷的博弈中,如何確定賭金的劃分,已知兩個博弈者在中斷時的得分及在博弈中獲勝所需要的分數。費馬這樣做出了討論:一個博弈者A需要4分獲勝,博弈者B需要3分獲勝的情況,這是費馬對此種特殊情況的解。因為顯然最多四次就能決定勝負。

      一般機率空間的概念,是人們對於概念的直觀想法的徹底公理化。從純數學觀點看,有限機率空間似乎顯得平淡無奇。但一旦引入了隨機變數和數學期望時,它們就成為神奇的世界了。費馬的貢獻便在於此。

      對數論的貢獻

      17世紀初,歐洲流傳著公元三世紀古希臘數學家丟番圖所寫的《算術》一書。l621年費馬在巴黎買到此書,他利用業餘時間對書中的不定方程進行了深入研究。費馬將不定方程的研究限制在整數範圍內,從而開始了數論這門數學分支。

      費馬在數論領域中的成果是巨大的,其中主要有:

      (1)全部素數可分為4n+1和4n+3兩種形式。

      (2)形如4n+1的素數能夠,而且只能夠以一種方式表為兩個平方數之和。

      (3)沒有一個形如4n+3的素數,能表示為兩個平方數之和。

      (4)形如4n+1的素數能夠且只能夠作為一個直角邊為整數的直角三角形的斜邊;4n+1的平方是且只能是兩個這種直角三角形的斜邊;類似地,4n+1的m次方是且只能是m個這種直角三角形的斜邊。

      (5)邊長為有理數的直角三角形的面積不可能是一個平方數。

      (6)4n+1形的素數與它的平方都只能以一種方式表達為兩個平方數之和;它的3次和4次方都只能以兩種表達為兩個平方數之和;5次和6次方都只能以3種方式表達為兩個平方數之和,以此類推,直至無窮。

      對光學的貢獻

      費馬在光學中突出的貢獻是提出最小作用原理,也叫最短時間作用原理。這個原理的提出源遠流長。早在古希臘時期,歐幾里得就提出了光的直線傳播定律相反射定律。後由海倫揭示了這兩個定律的理論實質——光線取最短路徑。經過若干年後,這個定律逐漸被擴充套件成自然法則,並進而成為一種哲學觀念。—個更為一般的“大自然以最短捷的可能途徑行動”的結論最終得出來,並影響了費馬。費馬的高明之處則在於變這種的哲學的觀念為科學理論。

      費馬同時討論了光在逐點變化的介質中行徑時,其路徑取極小的曲線的情形。並用最小作用原理解釋了一些問題。這給許多數學家以很大的鼓舞。尤其是尤拉,競用變分法技巧把這個原理用於求函式的極值。這直接導致了拉格朗日的成就,給出了最小作用原理的具體形式:對一個質點而言,其質量、速度和兩個固定點之間的距離的乘積之積分是一個極大值和極小值;即對該質點所取的實際路徑來說,必須是極大或極小。

  • 中秋節和大豐收的關聯?
  • 一個年輕人有夢想有追求難道有錯嗎?