拋物線y=x2-2x+k 與y軸交於C(0,-3)代入拋物線方程 -3 = 02 -2*0 +k 得 k=-3 y=x2-2x-3與x軸交的交點: 0 = x2-2x-3 即(x+1)(x-3)=0 x1= -1 , x2= 3 得A(-1, 0) B點(3, 0) 下面需要用距離公式,勾股定理 BC2 = (3-0)2 +(0-(-3))2 = 18 設Q點(m, n) CQ2 = (0-m)2 + (-3-n)2 = m2 + (n+3)2 BQ2 = (3-m)2 +(0-n)2 = (3-m)2 + n2 分2種情況, BQ為斜邊, CQ為直角邊; 或BQ為直角邊, CQ為斜邊 1) (3-m)2 + n2 = 18 + m2 + (n+3)2 化簡得 -6m = 18 +6n n = -m-3 (m,n)又在拋物線上 所以 n = m2 -2m -3 代入" -m-3 = m2 -2m -3 m =0 或 1 n = -3 或 -4 (0, -3)與C重複,捨去,得Q(1, -4) 2) (3-m)2 + n2 + 18 = m2 + (n+3)2 化簡得 -6m + 18 = 6n n = -m +3 (m,n)又在拋物線上 所以 n = m2 -2m -3 代入" -m+3 = m2 -2m -3 m = -2 或3 n = 5 或0 (3,0)與B重複,捨去,得Q(-2,5) 所以Q為 (1, -4) 或 (-2, 5)
拋物線y=x2-2x+k 與y軸交於C(0,-3)代入拋物線方程 -3 = 02 -2*0 +k 得 k=-3 y=x2-2x-3與x軸交的交點: 0 = x2-2x-3 即(x+1)(x-3)=0 x1= -1 , x2= 3 得A(-1, 0) B點(3, 0) 下面需要用距離公式,勾股定理 BC2 = (3-0)2 +(0-(-3))2 = 18 設Q點(m, n) CQ2 = (0-m)2 + (-3-n)2 = m2 + (n+3)2 BQ2 = (3-m)2 +(0-n)2 = (3-m)2 + n2 分2種情況, BQ為斜邊, CQ為直角邊; 或BQ為直角邊, CQ為斜邊 1) (3-m)2 + n2 = 18 + m2 + (n+3)2 化簡得 -6m = 18 +6n n = -m-3 (m,n)又在拋物線上 所以 n = m2 -2m -3 代入" -m-3 = m2 -2m -3 m =0 或 1 n = -3 或 -4 (0, -3)與C重複,捨去,得Q(1, -4) 2) (3-m)2 + n2 + 18 = m2 + (n+3)2 化簡得 -6m + 18 = 6n n = -m +3 (m,n)又在拋物線上 所以 n = m2 -2m -3 代入" -m+3 = m2 -2m -3 m = -2 或3 n = 5 或0 (3,0)與B重複,捨去,得Q(-2,5) 所以Q為 (1, -4) 或 (-2, 5)