解:圓C:x2 + y2 + 2x – 4y + 1 = 0,即(x + 1)2 + (y – 2)2 = 4的切線在X,Y軸上的截距相等,說明切線經過原點(橫軸截距,縱軸截距都是0),或者切線的斜率為-1;
1)切線經過原點,設切線的方程為y = kx ,即kx – y = 0,圓C:(x + 1)2 + (y – 2)2 = 4的圓心C(-1,2),半徑R = 2,由點到直線距離公式可得,圓心C到該切線的距離為半徑2,可得|-k – 2|/√(k2 + 1) = 2 => |k + 2| = 2√(k2 + 1) => |k + 2|2 = 4(k2 + 1) => k2 + 4k + 4 = 4k2 + 4 => 3k2 – 4k = 0 => k(3k – 4) = 0 => k = 0(捨去)或者3k – 4 = 0,即k = 4/3,所以切線的方程為y = 4x/3 ;
2)切線的斜率為-1,設切線的方程為y = -x + t,即x + y – t = 0,由點到直線距離公式可得,圓心C到該切線的距離為半徑2,可得|-1 + 2 – t|/√(12 + 12) = 2 =>|1 – t| = 2√2 => 1 – t =±2√2 => t = 1±2√2,所以切線的方程為y = -x + 1±2√2,即x + y – 1±2√2 = 0 ;
綜上所述,所求切線的方程為y = 4x/3 或者x + y – 1±2√2 = 0 。
解:圓C:x2 + y2 + 2x – 4y + 1 = 0,即(x + 1)2 + (y – 2)2 = 4的切線在X,Y軸上的截距相等,說明切線經過原點(橫軸截距,縱軸截距都是0),或者切線的斜率為-1;
1)切線經過原點,設切線的方程為y = kx ,即kx – y = 0,圓C:(x + 1)2 + (y – 2)2 = 4的圓心C(-1,2),半徑R = 2,由點到直線距離公式可得,圓心C到該切線的距離為半徑2,可得|-k – 2|/√(k2 + 1) = 2 => |k + 2| = 2√(k2 + 1) => |k + 2|2 = 4(k2 + 1) => k2 + 4k + 4 = 4k2 + 4 => 3k2 – 4k = 0 => k(3k – 4) = 0 => k = 0(捨去)或者3k – 4 = 0,即k = 4/3,所以切線的方程為y = 4x/3 ;
2)切線的斜率為-1,設切線的方程為y = -x + t,即x + y – t = 0,由點到直線距離公式可得,圓心C到該切線的距離為半徑2,可得|-1 + 2 – t|/√(12 + 12) = 2 =>|1 – t| = 2√2 => 1 – t =±2√2 => t = 1±2√2,所以切線的方程為y = -x + 1±2√2,即x + y – 1±2√2 = 0 ;
綜上所述,所求切線的方程為y = 4x/3 或者x + y – 1±2√2 = 0 。