y"" - 2y" + 5y = 0, 設y = e^[f(x)],則 y" = e^[f(x)]*f"(x), y""= e^[f(x)]*[f"(x)]^2 + e^[f(x)]*f""(x). 0 = y"" - 2y" + 5y = e^[f(x)]*[f"(x)]^2 + e^[f(x)]*f""(x) - 2e^[f(x)]*f"(x) + 5e^[f(x)], 0 = [f"(x)]^2 + f""(x) - 2f"(x) + 5, 當f(x) = ax + b, a,b是常數時。 f""(x) = 0, f"(x) = a. 0 = a^2 - 2a + 5. 2^2 - 4*5 = -16 < 0.(2^2-4*5)^(1/2)=4i. a = [2 + 4i]/2 = 1 + 2i或a = [2-4i]/2 = 1 - 2i. y = e^[f(x)] = e^[ax+b] = e^[(1+2i)x + b] = e^[x+b]*e^(2ix) 或 y = e^[f(x)] = e^[ax+b] = e^[(1-2i)x + b] = e^[x+b]*e^(-2ix) 因2個解都滿足微分方程。所以,微分方程的實函式解為, y = e^[x+b]*e^(2ix) + e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)+e^(-2ix)] = 2e^[x+b][cos(2x)] 或 y = e^[x+b]*e^(2ix) - e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)-e^(-2ix)] = 2e^[x+b][sin(2x)] 微分方程的實函式的通解為, y = 2c1e^[x+b][cos(2x)] + 2c2e^[x+b][sin(2x)] = e^x[2c1e^bcos(2x) + 2c2e^bsin(2x)]其中,c1,c2 是任意常數。記 C1 = 2c1e^b, C2 = 2c2e^b, 有 y = e^x[C1cos(2x) + C2sin(2x)] C1,C2為任意常數。這個,可能就是特徵方程無實數根時,通解的由來吧~~【俺記憶力很差,公式都記不住,全靠傻推。。 這樣的壞處是費時,好處是,自己推1遍,來龍去脈就清楚1些了。不知道,俺的傻推過程對你的疑問有點幫助沒~~】
y"" - 2y" + 5y = 0, 設y = e^[f(x)],則 y" = e^[f(x)]*f"(x), y""= e^[f(x)]*[f"(x)]^2 + e^[f(x)]*f""(x). 0 = y"" - 2y" + 5y = e^[f(x)]*[f"(x)]^2 + e^[f(x)]*f""(x) - 2e^[f(x)]*f"(x) + 5e^[f(x)], 0 = [f"(x)]^2 + f""(x) - 2f"(x) + 5, 當f(x) = ax + b, a,b是常數時。 f""(x) = 0, f"(x) = a. 0 = a^2 - 2a + 5. 2^2 - 4*5 = -16 < 0.(2^2-4*5)^(1/2)=4i. a = [2 + 4i]/2 = 1 + 2i或a = [2-4i]/2 = 1 - 2i. y = e^[f(x)] = e^[ax+b] = e^[(1+2i)x + b] = e^[x+b]*e^(2ix) 或 y = e^[f(x)] = e^[ax+b] = e^[(1-2i)x + b] = e^[x+b]*e^(-2ix) 因2個解都滿足微分方程。所以,微分方程的實函式解為, y = e^[x+b]*e^(2ix) + e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)+e^(-2ix)] = 2e^[x+b][cos(2x)] 或 y = e^[x+b]*e^(2ix) - e^[x+b]*e^(-2ix) = e^[x+b][e^(2ix)-e^(-2ix)] = 2e^[x+b][sin(2x)] 微分方程的實函式的通解為, y = 2c1e^[x+b][cos(2x)] + 2c2e^[x+b][sin(2x)] = e^x[2c1e^bcos(2x) + 2c2e^bsin(2x)]其中,c1,c2 是任意常數。記 C1 = 2c1e^b, C2 = 2c2e^b, 有 y = e^x[C1cos(2x) + C2sin(2x)] C1,C2為任意常數。這個,可能就是特徵方程無實數根時,通解的由來吧~~【俺記憶力很差,公式都記不住,全靠傻推。。 這樣的壞處是費時,好處是,自己推1遍,來龍去脈就清楚1些了。不知道,俺的傻推過程對你的疑問有點幫助沒~~】