要看根號下的那個數是不是完全平方數,即它能寫成另一個數的平方。如果是一個完全平方數,開根號後就是有理數;反之,是無理數。
數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。
擴充套件資料:
舉例:
若a^n=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用√ ̄表示,被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。
無理數是指實數範圍內不能表示成兩個整數之比的數。簡單的說,無理數就是10進位制下的無限不迴圈小數,如圓周率、等。
而有理數由所有分數,整陣列成,總能寫成整數、有限小數或無限迴圈小數,並且總能寫成兩整數之比,如21/7等。
參考資料:
要看根號下的那個數是不是完全平方數,即它能寫成另一個數的平方。如果是一個完全平方數,開根號後就是有理數;反之,是無理數。
數學上,有理數是一個整數a和一個正整數b的比,例如3/8,通則為a/b。0也是有理數。有理數是整數和分數的集合,整數也可看做是分母為一的分數。有理數的小數部分是有限或為無限迴圈的數。不是有理數的實數稱為無理數,即無理數的小數部分是無限不迴圈的數。
擴充套件資料:
舉例:
若a^n=b,那麼a是b開n次方的n次方根或a是b的1/n次方。開n次方手寫體和印刷體用√ ̄表示,被開方的數或代數式寫在符號左方v形部分的右邊和符號上方一橫部分的下方共同包圍的區域中,而且不能出界。
有理數集與整數集的一個重要區別是,有理數集是稠密的,而整數集是密集的。將有理數依大小順序排定後,任何兩個有理數之間必定還存在其他的有理數,這就是稠密性。整數集沒有這一特性,兩個相鄰的整數之間就沒有其他的整數了。
有理數是實數的緊密子集:每個實數都有任意接近的有理數。一個相關的性質是,僅有理數可化為有限連分數。依照它們的序列,有理數具有一個序拓撲。有理數是實數的(稠密)子集,因此它同時具有一個子空間拓撲。
無理數是指實數範圍內不能表示成兩個整數之比的數。簡單的說,無理數就是10進位制下的無限不迴圈小數,如圓周率、等。
而有理數由所有分數,整陣列成,總能寫成整數、有限小數或無限迴圈小數,並且總能寫成兩整數之比,如21/7等。
參考資料:
參考資料: